等价无穷小和泰勒公式有什么区别?

 我来答
PasirRis白沙
高粉答主

2015-10-10 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:3038万
展开全部
1、等价无穷小代换不是正宗的、独立的、国际认可的解题方法;

2、等价无穷小代换,是将麦克劳林级数展开式,窃取了第一项后,
拿来鱼目混珠的方法,是巧立名目的偷梁换柱的勾当!

3、麦克劳林级数展开,是将函数在原点附近展开;
泰勒级数展开,是将函数在其他点的附近展开。

我们的教学历来都是将两者混为一谈;
国际教学中,也有混为一谈的情况发生,但没有我们这样严重。

4、等价无穷小代换的理论基础是麦克劳林级数展开,
麦克劳林级数展开,没有自残自宫条件;
等价无穷小代换,有自残自宫条件:有加减时不能使用。

其实在加减时,有时可以,有时不可以。

因为我们在引入等价无穷小代换时是牵强附会的,
所以前倨后恭、始乱终弃是必然的,是我们的性格决定的。

5、【楼主问题的解答】:
A、用麦克劳林级数展开公式、用泰勒级数展开公式,放之海内外而皆准;
用等价无穷小代换,放之海内时而准、时而不准,放之海外而皆不准。

B、泰勒级数、麦克劳林级数,是严格的、普遍的,没有穿凿附会的自我阉割条款;
用投机取巧的、偷鸡摸狗的、鱼目混珠的等价无穷小代换时,有自我阉割条款:
【在加减时,不可以使用等价无穷小代换】。

这句话是掩耳盗铃、自欺欺人的;是言不由衷、色厉内荏的;
是出尔反尔、自打耳光的。
我们在有加减时,有时照样进行等价无穷小代换。
古木青青
推荐于2017-11-25 · TA获得超过1092个赞
知道小有建树答主
回答量:310
采纳率:100%
帮助的人:149万
展开全部
可以用泰勒公式求等价无穷小
比如e^x-1~x
实际过程是这样求得的:
e^x 在x=0用泰勒公式展开到二阶:e^x=1+x+(1/2)x^2+o(x^2)
所以e^x-1=x+(1/2)x^2+o(x^2)
显然:lim(x→0) [x+(1/2)x^2+o(x^2) ]/x=1
所以e^x-1~x
类似sinx~x, tgx~x, 1-cosx~(1/2)x^2, ln(x+1)~x, (1+x)^n-1~nx, 都可以用麦克劳林公式展开求得。
求极限时经常用等价无穷小来代换,但这种代换一般仅仅适用于因式之间的代换,对于加减运算来说则不适用,此时泰勒公式的展开式代换则可以发挥作用。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Boomerfree
2017-11-03
知道答主
回答量:24
采纳率:0%
帮助的人:3.9万
展开全部
请问您是指函数等价成泰勒公式还是其他什么意思,如果是前者的话

泰勒公式的等价可以用于定义域内的任意一个点上,作用是把不方便计算的函数(如三角函数、反三角函数、对数函数)等价成相当直观的幂级数的形式,方便计算函数值、方便复杂函数内的求导等等。
而等价无穷小只能用在趋向于无穷小时,作用也是与泰勒公式大致相同,例如e^x等价于1+x之类,适用范围局限于无穷小范围内,且使用时也有要求,不能随便等价
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
nsjiang1
2012-11-29 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3861万
展开全部
简单说:等价无穷小只能是乘积可以替换。
泰勒公式任何时候可以代入。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
应该不会重名了
2012-11-29 · TA获得超过1522个赞
知道小有建树答主
回答量:1002
采纳率:100%
帮助的人:666万
展开全部
再简单一些就是,等介无穷小是由泰勒公式推导出来的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式