3个回答
展开全部
在求矩阵的特征方程之前,需要先了解一下矩阵的特征值。假设有一个A,它是一个n阶方阵,如果有存在着这样一个数λ,数λ和一个n维非零的向量x,使的关系式Ax=λx成立,那么则称数λ为这个方阵的特征值,这个非零向量x就称为他的特征向量。
矩阵的特征方程的表达式为|λE-A|=0。是一个简单的2*2的矩阵,按照图片的例子可以求得矩阵方程和特征值,λ已知后,带入特征方程中即可。
扩展资料
判断矩阵可对角化的充要条件
矩阵可对角化有两个充要条件:1、矩阵有n个不同的特征向量;2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。
若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。(一个矩阵的对角阵不唯一,其特征值可以换序,但都存在由对应特征向量顺序组成的可逆矩阵P使=Λ)。
展开全部
假定其特征值为λ, 针对矩阵A, 则
|λE-A|=0. 通过矩阵的初等变换,
最终解得λ,即求得特征值。
对于对角线直接是特征值的情况。
必须矩阵本来形式为上三角阵或者下三角阵。
|λE-A|=0. 通过矩阵的初等变换,
最终解得λ,即求得特征值。
对于对角线直接是特征值的情况。
必须矩阵本来形式为上三角阵或者下三角阵。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询