小学六年级数学知识与能力训练整理与复习答案
5个回答
展开全部
小学数学总复习资料归纳
常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形(C:周长 S:面积 a:边长)
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
例1、(认识比例尺)
王伯伯家有一块长方形的菜地,长40米,宽30米。把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。你能分别写出菜地长、宽的图上距离和实际距离的比吗?
分析与解:图上距离和实际距离的单位不同,先要统一成相同的单位,写出比后再化简。
40米 = 4000厘米 3厘米 = 0.03米
= = =
图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 : 实际距离 = 比例尺或 = 比例尺
图上距离和实际距离的比是1:1000,这幅图的比例尺是1:1000,也可写成 ,仍读作1比1000。
点评:求一幅地图的比例尺是一种比较简单的题目。做的时候唯一要注意的就是末尾0的问题:一是米、千米化成厘米的时候要在米、千米那个数的末尾加上2、5个0;二是在求比例尺的结果时要注意0的个数。多数一数、想一想,是不会有错的。
例2、(对比例尺的理解及比例尺的两种表示方法)
比例尺1:1000表示图上距离是实际距离的几分之几?实际距离是图上距离的多少倍?图上1厘米表示实际距离多少米?
分析与解:比例尺1:1000表示图上距离是实际距离的 ,实际距离是图上距离的1000倍,图上1厘米的距离代表实际距离1000厘米,即10米。
像形如1:1000这样的比例尺叫做数值比例尺。比例尺1:1000还可以这样表示
0 10 20 30米
,这是线段比例尺,它表示图上1厘米的距离代表实际距离10米。
例3、一个手表零件长2毫米,画在一幅图上长4厘米,这幅图的比例尺是多少?
错误解法:4厘米 = 40毫米 2 : 40 = 1 : 20
思路分析:无论什么样的图纸,比例尺始终是图上距离与实际距离的比,根据比例尺的定义,用“图上距离 : 实际距离 = 比例尺”去求。
正确解答:4厘米 = 40毫米 40 : 2 = 20 : 1
点评:比例尺通常情况下都应该写成前项是1的比。但比例尺的作用除了把实际距离缩小,还可以把实际距离扩大,这样比例尺的前项就比后项大,这时后项通常化成1。在解答时,只要坚持好“图上距离 : 实际距离 = 比例尺”,图上距离在前就可以了。
例4、(根据比例尺求图上距离或实际距离)
在比例尺是 的地图上,量得甲、乙两地的距离是2.5厘米。两地的实际距离是多少米?
分析与解:方法1:比例尺是 ,说明实际距离是图上距离的60000倍。
2.5×60000 = 150000(厘米)
150000(厘米)= 1500米
方法2:比例尺是 ,也就是图上1厘米的距离代表实际距离60000厘米,即600米。
2.5×600 = 1500(米)
方法3:根据 = 比例尺,可以用“图上距离 ÷ 比例尺”或“解比例”的方法来求实际距离。
2.5 ÷ = 2.5×60000 = 150000(厘米)= 1500米
解:设两地的实际距离是ⅹ厘米。
=
1ⅹ = 2.5 × 60000
ⅹ = 150000
150000(厘米)= 1500米
答:两地的实际距离是1500厘米。
例5、(平面图形按照一定的比放大后,面积扩大了比的平方倍)
下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。
分析与解:量得小长方形的长是2.5厘米,宽是1厘米;大长方形的长是7.5厘米,宽是3厘米。大长方形与小长方形长的比是7.5 : 2.5 = 3 : 1,宽的比是3 : 1。
= = × = 9 : 1 = 3² : 1
答:大长方形与小长方形面积的比是9 : 1。
例6、(认识北偏东(西)若干度、南偏东(西)若干度等方向)
如图,一辆汽车向正北方向行驶,你能说出商场和书店分别在汽车的什么方向吗?
N
商场 北
45º
60º 书店
0 3 6 9千米
汽车
分析与解:从图上可以看出,以汽车为中心,书店在汽车的东北方向,商场在汽车的西北方向。
怎样才能更准确地表示它们的位置呢?
东北方向也叫做北偏东方向,书店在汽车的北偏东60º方向。
西北方向也叫做北偏西方向,商场在汽车的北偏西45º方向。
答:书店在汽车的北偏东60º方向,商场在汽车的北偏西45º方向。
例7、(知道了物体的方向和距离,才能确定物体的具体位置)
量出上图中书店到汽车的图上距离,根据比例尺算一算,书店在汽车北偏东60º方向的多少千米处?商场呢?
分析与解:从图中量得书店和商场到汽车的图上距离分别是1.2厘米和2.3厘米,根据比例尺,图上距离1厘米代表实际距离3千米,分别算出实际距离。
1.2 × 3 = 3.6(千米)┄┄┄书店
2.3 × 3 = 6.9(千米)┄┄┄商场
答:书店在汽车北偏东60º方向的3.6千米处,商场在汽车北偏西45º方向的6.9千米处。
点评:只有在方向词的后面添上角的度数,才能准确描述物体所在的位置。确定方向时,一定要先确定好南或北,再看是偏东还是偏西,如果图中没有画线,要先连线。算实际距离就根据前面比例尺的相关知识去求。
例8、(辨析)书店在汽车的北偏东60º方向,表示汽车也在书店的北偏东60º方向。
分析与解:书店在汽车的北偏东60º方向,是以汽车为中心,由北向东旋转60º;而以书店为中心,汽车在书店的西南方向,即南偏西60º方向。
书店在汽车的北偏东60º方向,表示汽车在书店的南偏西60º方向。
例9、(根据给定的方向和距离,有序地确定物体的具体位置)
海面上有一座灯塔,灯塔北偏西30º方向30千米处是凤凰岛。
N
北
W西 东E
灯塔
0 10 20 30千米
南
S
你能在图上指出凤凰岛大约在什么位置吗?
分析与解:(1)先确定北偏西30º的方向,画一条射线。
N
30º
灯塔
(2)再算出灯塔到凤凰岛的图上距离是多少厘米。
30 ÷ 10 = 3(厘米)
凤凰岛 ● N
30º
灯塔
点评:在表示凤凰岛的具体位置时,先要画出表示方向的射线,再确定灯塔到凤凰岛的图上距离。且在画表示方向的射线时,应从表示灯塔的点开始画起,并注意正确摆好量角器。
例10、(用方向和距离描述简单的行走路线)
下图是某市旅游1号车行驶的线路图,请根据线路图填空。
(1)旅游1号车从起点站出发,向( )行驶到达青水公园,再向( )偏( )( )的方向行( )千米到达抗战纪念碑。
(2)由绿博园向南偏( )( )的方向行( )千米到达购物中心,再向北偏( )( )的方向行( )千米到达人民公园。
分析与解:先找准方向,再说出具体的路程。(1)旅游1号车从起点站出发,向( 东 )行驶到达青水公园,再向( 北 )偏(东)(40º)的方向行(1.8 )千米到达抗战纪念碑。
(2)由绿博园向南偏(东)(60º)的方向行(1.7)千米到达购物中心,再向北偏( 东 )
(70º)的方向行(1.5)千米到达人民公园。
点评:在进行描述的时候,一定要先说清楚方向再说路程。说方向的时候为了说清楚,通常情况下不用东北、西北、东南、西南等说法,而用南偏东、南偏西、北偏东、北偏西多少度的说法更为准确。
常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形(C:周长 S:面积 a:边长)
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
例1、(认识比例尺)
王伯伯家有一块长方形的菜地,长40米,宽30米。把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。你能分别写出菜地长、宽的图上距离和实际距离的比吗?
分析与解:图上距离和实际距离的单位不同,先要统一成相同的单位,写出比后再化简。
40米 = 4000厘米 3厘米 = 0.03米
= = =
图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 : 实际距离 = 比例尺或 = 比例尺
图上距离和实际距离的比是1:1000,这幅图的比例尺是1:1000,也可写成 ,仍读作1比1000。
点评:求一幅地图的比例尺是一种比较简单的题目。做的时候唯一要注意的就是末尾0的问题:一是米、千米化成厘米的时候要在米、千米那个数的末尾加上2、5个0;二是在求比例尺的结果时要注意0的个数。多数一数、想一想,是不会有错的。
例2、(对比例尺的理解及比例尺的两种表示方法)
比例尺1:1000表示图上距离是实际距离的几分之几?实际距离是图上距离的多少倍?图上1厘米表示实际距离多少米?
分析与解:比例尺1:1000表示图上距离是实际距离的 ,实际距离是图上距离的1000倍,图上1厘米的距离代表实际距离1000厘米,即10米。
像形如1:1000这样的比例尺叫做数值比例尺。比例尺1:1000还可以这样表示
0 10 20 30米
,这是线段比例尺,它表示图上1厘米的距离代表实际距离10米。
例3、一个手表零件长2毫米,画在一幅图上长4厘米,这幅图的比例尺是多少?
错误解法:4厘米 = 40毫米 2 : 40 = 1 : 20
思路分析:无论什么样的图纸,比例尺始终是图上距离与实际距离的比,根据比例尺的定义,用“图上距离 : 实际距离 = 比例尺”去求。
正确解答:4厘米 = 40毫米 40 : 2 = 20 : 1
点评:比例尺通常情况下都应该写成前项是1的比。但比例尺的作用除了把实际距离缩小,还可以把实际距离扩大,这样比例尺的前项就比后项大,这时后项通常化成1。在解答时,只要坚持好“图上距离 : 实际距离 = 比例尺”,图上距离在前就可以了。
例4、(根据比例尺求图上距离或实际距离)
在比例尺是 的地图上,量得甲、乙两地的距离是2.5厘米。两地的实际距离是多少米?
分析与解:方法1:比例尺是 ,说明实际距离是图上距离的60000倍。
2.5×60000 = 150000(厘米)
150000(厘米)= 1500米
方法2:比例尺是 ,也就是图上1厘米的距离代表实际距离60000厘米,即600米。
2.5×600 = 1500(米)
方法3:根据 = 比例尺,可以用“图上距离 ÷ 比例尺”或“解比例”的方法来求实际距离。
2.5 ÷ = 2.5×60000 = 150000(厘米)= 1500米
解:设两地的实际距离是ⅹ厘米。
=
1ⅹ = 2.5 × 60000
ⅹ = 150000
150000(厘米)= 1500米
答:两地的实际距离是1500厘米。
例5、(平面图形按照一定的比放大后,面积扩大了比的平方倍)
下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。
分析与解:量得小长方形的长是2.5厘米,宽是1厘米;大长方形的长是7.5厘米,宽是3厘米。大长方形与小长方形长的比是7.5 : 2.5 = 3 : 1,宽的比是3 : 1。
= = × = 9 : 1 = 3² : 1
答:大长方形与小长方形面积的比是9 : 1。
例6、(认识北偏东(西)若干度、南偏东(西)若干度等方向)
如图,一辆汽车向正北方向行驶,你能说出商场和书店分别在汽车的什么方向吗?
N
商场 北
45º
60º 书店
0 3 6 9千米
汽车
分析与解:从图上可以看出,以汽车为中心,书店在汽车的东北方向,商场在汽车的西北方向。
怎样才能更准确地表示它们的位置呢?
东北方向也叫做北偏东方向,书店在汽车的北偏东60º方向。
西北方向也叫做北偏西方向,商场在汽车的北偏西45º方向。
答:书店在汽车的北偏东60º方向,商场在汽车的北偏西45º方向。
例7、(知道了物体的方向和距离,才能确定物体的具体位置)
量出上图中书店到汽车的图上距离,根据比例尺算一算,书店在汽车北偏东60º方向的多少千米处?商场呢?
分析与解:从图中量得书店和商场到汽车的图上距离分别是1.2厘米和2.3厘米,根据比例尺,图上距离1厘米代表实际距离3千米,分别算出实际距离。
1.2 × 3 = 3.6(千米)┄┄┄书店
2.3 × 3 = 6.9(千米)┄┄┄商场
答:书店在汽车北偏东60º方向的3.6千米处,商场在汽车北偏西45º方向的6.9千米处。
点评:只有在方向词的后面添上角的度数,才能准确描述物体所在的位置。确定方向时,一定要先确定好南或北,再看是偏东还是偏西,如果图中没有画线,要先连线。算实际距离就根据前面比例尺的相关知识去求。
例8、(辨析)书店在汽车的北偏东60º方向,表示汽车也在书店的北偏东60º方向。
分析与解:书店在汽车的北偏东60º方向,是以汽车为中心,由北向东旋转60º;而以书店为中心,汽车在书店的西南方向,即南偏西60º方向。
书店在汽车的北偏东60º方向,表示汽车在书店的南偏西60º方向。
例9、(根据给定的方向和距离,有序地确定物体的具体位置)
海面上有一座灯塔,灯塔北偏西30º方向30千米处是凤凰岛。
N
北
W西 东E
灯塔
0 10 20 30千米
南
S
你能在图上指出凤凰岛大约在什么位置吗?
分析与解:(1)先确定北偏西30º的方向,画一条射线。
N
30º
灯塔
(2)再算出灯塔到凤凰岛的图上距离是多少厘米。
30 ÷ 10 = 3(厘米)
凤凰岛 ● N
30º
灯塔
点评:在表示凤凰岛的具体位置时,先要画出表示方向的射线,再确定灯塔到凤凰岛的图上距离。且在画表示方向的射线时,应从表示灯塔的点开始画起,并注意正确摆好量角器。
例10、(用方向和距离描述简单的行走路线)
下图是某市旅游1号车行驶的线路图,请根据线路图填空。
(1)旅游1号车从起点站出发,向( )行驶到达青水公园,再向( )偏( )( )的方向行( )千米到达抗战纪念碑。
(2)由绿博园向南偏( )( )的方向行( )千米到达购物中心,再向北偏( )( )的方向行( )千米到达人民公园。
分析与解:先找准方向,再说出具体的路程。(1)旅游1号车从起点站出发,向( 东 )行驶到达青水公园,再向( 北 )偏(东)(40º)的方向行(1.8 )千米到达抗战纪念碑。
(2)由绿博园向南偏(东)(60º)的方向行(1.7)千米到达购物中心,再向北偏( 东 )
(70º)的方向行(1.5)千米到达人民公园。
点评:在进行描述的时候,一定要先说清楚方向再说路程。说方向的时候为了说清楚,通常情况下不用东北、西北、东南、西南等说法,而用南偏东、南偏西、北偏东、北偏西多少度的说法更为准确。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
。。。。。。。。。。你就自己复习吧。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没啥难的,自己复习吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
其实去书店买本教科书知识详解 里面都有答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
比,比例,百分比,税率。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |