2个回答
展开全部
令x=(tant)^4
4∫(sint)^2/(cost)^3dt
4∫(sint)^2/(cost)^4d(sint)
令sint=m
4∫m^2/(1+m^2)^2dm
令m=1/n
-4∫1/(n^2-1)^2dn
裂项
-∫[1/(n-1)-1/(n+1)]^2dn
得到
-∫1/(n-1)^2dn-∫1/(n+1)^2dn+2∫1/(n-1)(n+1)dn
积分前面两项最后一项再
1/(n-1)+1/(n+1)+∫1/(n-1)-1/(n+1)dn
1/(n-1)+1/(n+1)+ln(n-1)-ln(n+1)+C
4∫(sint)^2/(cost)^3dt
4∫(sint)^2/(cost)^4d(sint)
令sint=m
4∫m^2/(1+m^2)^2dm
令m=1/n
-4∫1/(n^2-1)^2dn
裂项
-∫[1/(n-1)-1/(n+1)]^2dn
得到
-∫1/(n-1)^2dn-∫1/(n+1)^2dn+2∫1/(n-1)(n+1)dn
积分前面两项最后一项再
1/(n-1)+1/(n+1)+∫1/(n-1)-1/(n+1)dn
1/(n-1)+1/(n+1)+ln(n-1)-ln(n+1)+C
追问
比楼上的简便多了哈
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
令u=√x,则du=dx/(2√x)
∫dx/√(x+√x)
=2∫ u/√(u²+u) du
=2∫ u/√[(u+1/2)²-1/4] du
=2∫ (1/2·sect-1/2)/√[1/4·sect-1/4]·1/2·tant·sect dt 【令1/2·sect=u+1/2,du=1/2·tant·sectdt】
=∫(sec²t-sect) dt
=∫sec²tdt-∫sectdt
=tant-ln|tant+sect|+C
=2√(x+√x)-ln|2√x+2√(x+√x)+1|+C
令u=√x,则du=dx/(2√x)
∫dx/√(x+√x)
=2∫ u/√(u²+u) du
=2∫ u/√[(u+1/2)²-1/4] du
=2∫ (1/2·sect-1/2)/√[1/4·sect-1/4]·1/2·tant·sect dt 【令1/2·sect=u+1/2,du=1/2·tant·sectdt】
=∫(sec²t-sect) dt
=∫sec²tdt-∫sectdt
=tant-ln|tant+sect|+C
=2√(x+√x)-ln|2√x+2√(x+√x)+1|+C
更多追问追答
追问
请问是怎么想到这步的?令1/2·sect=u 1/2,du=1/2·tant·sectdt
追答
根据sec²t-1=tan²t
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询