展开全部
解:
令x=asint,则dx=acost dt
∫x²/√(a²-x²) dx
=∫a²sin²t/(acost)·acost dt
=a²∫sin²t dt
=a²∫(1-cos2x)/2 dt
=a²[t-1/4·sin2x]+C
=a²[arcsin(x/a)-1/2·x/a·√(1-x²/x²)]+C
令x=asint,则dx=acost dt
∫x²/√(a²-x²) dx
=∫a²sin²t/(acost)·acost dt
=a²∫sin²t dt
=a²∫(1-cos2x)/2 dt
=a²[t-1/4·sin2x]+C
=a²[arcsin(x/a)-1/2·x/a·√(1-x²/x²)]+C
追问
答案是a^2/2(arcsin(x/a)-x√(a^2-x^2)/a^2)+c.....刚忘记发了。。。我就是用你的方法来做的然后做到a²∫(1-cos2x)/2 dt 再往后做就做不对了= =!
追答
解:
令x=asint,则dx=acost dt
∫x²/√(a²-x²) dx
=∫a²sin²t/(acost)·acost dt
=a²∫sin²t dt
=a²∫(1-cos2x)/2 dt
=a²[t/2-1/4·sin2x]+C
=a²[arcsin(x/a)/2-1/2·x/a·√(1-x²/a²)]+C
=a²/2·arcsinx/a-1/2·x√(a²-x²)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询