在五边形abcd中,ab垂直于bc,ae垂直于de,角bac等于角dae,m为cd中点,,n为be中点,求证mn垂直于be

 我来答
融惜珊实杰
2020-03-05 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:670万
展开全部
本题显然缺少条件.
现补充一个条件"AB=AE"或"BC=DE"或"AC=AD".
◆下面以补充条件"AB+AE"进行证明如下:
证明:∵"AB=AE";∠ABC=∠AED=90°;∠BAC=∠EAD.
∴∠ABE=∠AEB;(等边对等角)

⊿ABC≌⊿AED(AAS),BC=ED;∠ACB=∠ADE;AC=AD,得∠ACD=∠ADC.
∴∠EBC=∠BED(等式的性质).
则∠EBC+∠ACB+∠ACD=∠BED+∠ADE+∠ADC=180°
.
∴BE∥CD;又BC=DE.故四边形BCDE为等腰梯形;
又M和N分别为两底CD和BE的中点,即MN所在直线为梯形BCDE的对称轴.
∴MN⊥BE.
(注:也可连接BM和EM,通过证⊿BCM≌⊿EDM,得BM=EM;又N为BE中点,故MN垂直BE.)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式