半径为R的圆外接于ABC,且2R(sinA平方-sinC平方)=(根号3a-b)sinB, 求角C和三角形ABC的最大面积??
展开全部
我觉得应该 这样S=(1/2)absinC=2R²sinAsinBsinC
=√2R²sinAsinB
根据两角正弦积化和的公式
S=√2R²sinAsinB=(√2R²/2)[cos(A-B)-cos(A+B)]
=(√2R²/2)[cos(A-B)+cosC]
=(√2R²/2)[cos(A-B)+√2/2]
≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2
所以当A=B的时候
三角形ABC的面积的最大值是[(√2+1)R²]/2
=√2R²sinAsinB
根据两角正弦积化和的公式
S=√2R²sinAsinB=(√2R²/2)[cos(A-B)-cos(A+B)]
=(√2R²/2)[cos(A-B)+cosC]
=(√2R²/2)[cos(A-B)+√2/2]
≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2
所以当A=B的时候
三角形ABC的面积的最大值是[(√2+1)R²]/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解析:由正弦定理a/sinA=b/sinB=c/sinC=2R
∴a^2-c^2=(√3a-b)b=√3ab-b^2
即(a^2+b^2-c^2)/2ab=√3/2
∴cosC=√3/2
∠C=30°
∵a^2+b^2=√3ab+c^2
=√3ab+4R^2*(sin30°)^2
=√3ab+R^2≥2ab,
当且仅当a=b,取=
∴ab≤(2+√3)R^2
S△ABC=1/2*absinC=ab/4≤(2+√3)R^2/4
即S△ABC的最大值为(2+√3)R^2/4
∴a^2-c^2=(√3a-b)b=√3ab-b^2
即(a^2+b^2-c^2)/2ab=√3/2
∴cosC=√3/2
∠C=30°
∵a^2+b^2=√3ab+c^2
=√3ab+4R^2*(sin30°)^2
=√3ab+R^2≥2ab,
当且仅当a=b,取=
∴ab≤(2+√3)R^2
S△ABC=1/2*absinC=ab/4≤(2+√3)R^2/4
即S△ABC的最大值为(2+√3)R^2/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询