欧氏空间的乘法是怎么定义?有什么性质?
1个回答
展开全部
欧氏空间,在数学中是对欧几里德所研究的2维和3维空间的一般化。这个一般化把欧几里德对于距离、以及相关的概念长度和角度,转换成任意数维的坐标系。
这是有限维、实和内积空间的“标准”例子。
欧氏空间是一个的特别的度量空间,它使得我们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。内积空间和度量空间都在泛函分析中得到了探讨。
欧几里德空间在对包含了欧氏几何和非欧几何的流形的定义上发挥了作用。一个定义距离函数的数学动机是为了定义空间中围绕点的开球。这一基本的概念正当化了在欧氏空间和其他流形之间的微分。微分几何把微分,会同导入机动性手法,局部欧氏空间,探讨了非欧氏流形的性质。
这是有限维、实和内积空间的“标准”例子。
欧氏空间是一个的特别的度量空间,它使得我们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。内积空间和度量空间都在泛函分析中得到了探讨。
欧几里德空间在对包含了欧氏几何和非欧几何的流形的定义上发挥了作用。一个定义距离函数的数学动机是为了定义空间中围绕点的开球。这一基本的概念正当化了在欧氏空间和其他流形之间的微分。微分几何把微分,会同导入机动性手法,局部欧氏空间,探讨了非欧氏流形的性质。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询