已知sinα=2/3,cos=-3/4,α∈(π/2,π),求cos(α-β),sin(2α+π/4)的值。
1个回答
展开全部
sinα=2/3,cosβ=-3/4,α,β∈(π/2,π)
cosα=-√(1-sin²α)=-√5/3,sinβ=√(1-cos²β)=√7/4
∴ cos(α-β)=cosαcosβ+sinαsinβ
=-√5/3*(-3/4)+2/3*√7/4
=√5/4+√7/6
sin(2α+π/4)=sin2αcos(π/4)+cos2αsin(π/4)
=√2/2*[sin2α+cos2α]
=√2/2*[2sinαcosα+cos²α-sin²α]
=√2/2*[2*2/3*(-√5/3)+(-√5/3)²-(2/3)²]
=√2/2*[-4√5/9+5/9-4/9]
=√2/2*[(-4√5+1)/9]
cosα=-√(1-sin²α)=-√5/3,sinβ=√(1-cos²β)=√7/4
∴ cos(α-β)=cosαcosβ+sinαsinβ
=-√5/3*(-3/4)+2/3*√7/4
=√5/4+√7/6
sin(2α+π/4)=sin2αcos(π/4)+cos2αsin(π/4)
=√2/2*[sin2α+cos2α]
=√2/2*[2sinαcosα+cos²α-sin²α]
=√2/2*[2*2/3*(-√5/3)+(-√5/3)²-(2/3)²]
=√2/2*[-4√5/9+5/9-4/9]
=√2/2*[(-4√5+1)/9]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询