级数(n+1)!/n^n+1敛散性
解题过程如下:
limit{n->∞}(n^(n+1/n))/((n+1/n)^n)
=limit{n->∞}[n/(n+1/n)]^n*n*(1/n)
=limit{n->∞}[1/(1+1/n^2)]^n*limit{n->∞}n*(1/n)
=1/limit{n->∞}exp[n*ln(1+1/n^2)]*limit{n->∞}exp[(1/n)*lnn]
=1/limit{n->∞}exp(n*1/n^2)*limit{n->∞}exp(1/n)
=1/exp(0)*exp(0)
=1,不等于0级数发散
扩展资料
求收敛级数的方法:
函数级数是形如∑an(x-x0)^n的级数,称之为幂级数。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。
例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。
如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,正项级数与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有上界。
例如∑1/n!收敛,因为:Sm=1+1/2!+1/3!+···+1/m!<1+1+1/2+1/22+···+1/2^(m-1)<3(2^3表示2的3次方)。
如果级数的每一项依赖于变量x,x 在某区间I内变化,即un=un(x),x∈I,则∑un(x)称为函数项级数,简称函数级数。
若x=x0使数项级数∑un(x0)收敛,就称x0为收敛点,由收敛点组成的集合称为收敛域,若对每一x∈I,级数∑un(x)都收敛,就称I为收敛区间。
函数级数在其收敛域内定义了一个函数,称之为和函数S(x),即S(x)=∑un(x)如果满足更强的条件,Sm(x)在收敛域内一致收敛于S(x)。
当n>=6,(n+1)!<n^(n-1)
则有
(n+1)!/n^(n+1)<n^(n-1)/n^(n+1)=1/n^2
而一般项为1/n^2的级数是p=2>1的p级数,它是收敛的!
利用比较审敛法,得
原级数是收敛的!
而一般项 为1/n^2的级数是p=2>1的p级数,是收敛的,
所以级数(n+1)!/n^n+1也是收敛的。
广告 您可能关注的内容 |