在平行四边形ABCD中,AB=5,BC=10,F为AD中点,CE⊥AB于E

设∠ABC=α(60°≤α<90°)(1)当α=60°时,求CE的长(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k值;若不存在... 设∠ABC=α(60°≤α<90°)
(1)当α=60°时,求CE的长
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k值;若不存在,请说明理由。
②连接CF,当BE为何值时,CE²-CF²取最大值。
展开
 我来答
听说你很有范儿
2013-01-03
知道答主
回答量:34
采纳率:0%
帮助的人:15.2万
展开全部
∵α=60°,BC=10,
∴sinα=
CE
BC

即sin60°=
CE
10
=
3
2

解得CE=5
3

(2)①存在k=3,使得∠EFD=k∠AEF.
理由如下:连接CF并延长交BA的延长线于点G,
∵F为AD的中点,
∴AF=FD,
在平行四边形ABCD中,AB∥CD,
∴∠G=∠DCF,
在△AFG和△CFD中,
∠G=∠DCF∠AFG=∠DFC(对顶角相等)AF=FD

∴△AFG≌△CFD(AAS),
∴CF=GF,AG=CD,
∵CE⊥AB,
∴EF=GF(直角三角形斜边上的中线等于斜边的一半),
∴∠AEF=∠G,
∵AB=5,BC=10,点F是AD的中点,
∴AG=5,AF=
1
2
AD=
1
2
BC=5,
∴AG=AF,
∴∠AFG=∠G,
在△EFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG(对顶角相等),
∴∠CFD=∠AEF,
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整数k=3,使得∠EFD=3∠AEF;
②设BE=x,∵AG=CD=AB=5,
∴EG=AE+AG=5-x+5=10-x,
在Rt△BCE中,CE2=BC2-BE2=100-x2,
在Rt△CEG中,CG2=EG2+CE2=(10-x)2+100-x2=200-20x,
∵CF=GF(①中已证),
∴CF2=(
1
2
CG)2=
1
4
CG2=
1
4
(200-20x)=50-5x,
∴CE2-CF2=100-x2-50+5x=-x2+5x+50=-(x-
5
2
)2+50+
25
4

∴当x=
5
2
,即点E是AB的中点时,CE2-CF2取最大值,
此时,EG=10-x=10-
5
2
=
15
2

CE=
100-x2
=
100-254
=
515
2

所以,tan∠DCF=tan∠G=
CE
EG
=
5152
152
=
15
3 .
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
创远信科
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创... 点击进入详情页
本回答由创远信科提供
hem823219950
2012-12-07 · TA获得超过268个赞
知道小有建树答主
回答量:501
采纳率:0%
帮助的人:198万
展开全部
(1)∵在RT△BCE中,cos(α=BC/CE
∴CE=BC/cos(α=10/cos(60°=10/(根号3/2)=5倍的根号3
懒得做了原谅我~……
追问
看你那么有诚意 就原谅你吧 ~~     ( * ^ _ ^ * ) 嘻嘻……

(唉! 数学白痴不好做呀~~~)
来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式