2个回答
展开全部
解:
lim【x→0】(lntanx-lnx)/(x^2)
=lim【x→0】ln[(tanx)/x]/(x^2)
=lim【x→0】ln[(sinx/cosx)/x]/(x^2)
=lim【x→0】ln(1/cosx)/(x^2)
=lim【x→0】(1/cosx-1)/(x^2)
=lim【x→0】(1-cosx)/(cosx·x^2)
=lim【x→0】[(x^2)/2]/(x^2)
=1/2
答案;:1/2
lim【x→0】(lntanx-lnx)/(x^2)
=lim【x→0】ln[(tanx)/x]/(x^2)
=lim【x→0】ln[(sinx/cosx)/x]/(x^2)
=lim【x→0】ln(1/cosx)/(x^2)
=lim【x→0】(1/cosx-1)/(x^2)
=lim【x→0】(1-cosx)/(cosx·x^2)
=lim【x→0】[(x^2)/2]/(x^2)
=1/2
答案;:1/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询