如图,A.B是笔直公路L同侧两个村庄…使两村到停靠站的距离之和最小。问最小值是多少
展开全部
解:作点B关于公路l的对称点B′,连接AB′交公路于点C,
此时满足停靠站到两村之和距离最小,此时的距离之和=CA+CB=CA+CB'=AB',
作AD⊥BB'于点D,则CB+CA=CB'+CA=AB',
由题意得,AB2=d2=400000m2,DB=BE-DE=BE-AF=200m,DB'=DE+EB'=800m,
在RT△ADB中,AD2=AB2-BD2=400000-40000=360000,
在RT△ADB'中,AB'=AD2+DB′2=1000米.
答:停靠站建在点C出使得两村到停靠站的距离之和最小,最小值为1000米.
此时满足停靠站到两村之和距离最小,此时的距离之和=CA+CB=CA+CB'=AB',
作AD⊥BB'于点D,则CB+CA=CB'+CA=AB',
由题意得,AB2=d2=400000m2,DB=BE-DE=BE-AF=200m,DB'=DE+EB'=800m,
在RT△ADB中,AD2=AB2-BD2=400000-40000=360000,
在RT△ADB'中,AB'=AD2+DB′2=1000米.
答:停靠站建在点C出使得两村到停靠站的距离之和最小,最小值为1000米.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询