在△ABC中a,b,c分别是角A,B,C的对边,已知3(b²+c²)=3a²+2bc
(1)若sinB=根号(2)cosC求tanC的大小(2)若a=2,△ABC的面积S=(根号2)/2,且b>c,求b,c...
(1)若sinB=根号(2)cosC求tanC的大小
(2)若a=2,△ABC的面积S=(根号2)/2,且b>c,求b,c 展开
(2)若a=2,△ABC的面积S=(根号2)/2,且b>c,求b,c 展开
1个回答
展开全部
∵ 3(b² c²)=3a² 2bc
∴3(b² c²-a²)=2bc
∴ (b² c²-a²)/2bc=1/3=cosA
∵(cosA)² (sinA)²=1
∴(sinA)²=1-1/9=8/9
∴sinA=2√2/3
(1)sinB=√2cosC
∴ sin(A C)=√2cosC
∴ sinAcosC cosAsinC=√2cosC
∴ (2√2/3)cosC (1/3)sinC=√2cosC
∴ (1/3)sinC=(√2/3)cosC
∴ tanC=sinC/cosC=√2
(2)S=(1/2)bcsinA=√2/2
∴ bc*(2√2/3)=√2
∴ bc=3/2 ①
由余弦定理
a²=b² c²-2bccosA
∴ 4=b² c²-2*(3/2)*(1/3)
∴ b² c²=5 ②
∴ (b c)²=b² c² 2bc=8
(b-c)²=b² c²-2bc=2
∴ b c=2√2,b-c=√2 (∵b>c)
∴ b=2√2/3, c=√2/2 如您满意,还望采纳!
∴3(b² c²-a²)=2bc
∴ (b² c²-a²)/2bc=1/3=cosA
∵(cosA)² (sinA)²=1
∴(sinA)²=1-1/9=8/9
∴sinA=2√2/3
(1)sinB=√2cosC
∴ sin(A C)=√2cosC
∴ sinAcosC cosAsinC=√2cosC
∴ (2√2/3)cosC (1/3)sinC=√2cosC
∴ (1/3)sinC=(√2/3)cosC
∴ tanC=sinC/cosC=√2
(2)S=(1/2)bcsinA=√2/2
∴ bc*(2√2/3)=√2
∴ bc=3/2 ①
由余弦定理
a²=b² c²-2bccosA
∴ 4=b² c²-2*(3/2)*(1/3)
∴ b² c²=5 ②
∴ (b c)²=b² c² 2bc=8
(b-c)²=b² c²-2bc=2
∴ b c=2√2,b-c=√2 (∵b>c)
∴ b=2√2/3, c=√2/2 如您满意,还望采纳!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询