求不定积分∫[3(x^2)+2x]/(x+1) dx
2个回答
展开全部
解:
∫(3x²+2x)/(x+1) dx
=3∫(x²+2x/3)/(x+1)dx
=3∫(x²+2x+1-4x/3-1)/(x+1) dx
=3∫[(x+1)-(4x/3+4/3-1/3)/(x+1)]dx
=3∫[(x+1)-4/3+1/3·1/(x+1)]dx
=3∫(x+1) d(x+1)-4∫dx+∫1/(x+1)dx
=3(x+1)²/2-4x+ln|x+1|+C
∫(3x²+2x)/(x+1) dx
=3∫(x²+2x/3)/(x+1)dx
=3∫(x²+2x+1-4x/3-1)/(x+1) dx
=3∫[(x+1)-(4x/3+4/3-1/3)/(x+1)]dx
=3∫[(x+1)-4/3+1/3·1/(x+1)]dx
=3∫(x+1) d(x+1)-4∫dx+∫1/(x+1)dx
=3(x+1)²/2-4x+ln|x+1|+C
追问
=3∫[(x+1)-(4x/3+4/3-1/3)/(x+1)]dx???
追答
=3∫(x²+2x+1-4x/3-1)/(x+1) dx
=3∫[(x+1)-(4x/3+1)/(x+1)]dx
=3∫[(x+1)-(4x/3+4/3-1/3)/(x+1)]dx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询