习题解答:一道大学物理电磁学,电动力学习题。 50

无限大空间,上半空间为真空,下半空间为介质,介质的相对介电常数为s。在空间分界面上有一点电荷Q,距离点电荷Q为d的分界面上还有另一点电荷p,求p所受的静电力。... 无限大空间,上半空间为真空,下半空间为介质,介质的相对介电常数为s。在空间分界面上有一点电荷Q,距离点电荷Q为d的分界面上还有另一点电荷p,求p所受的静电力。 展开
 我来答
百度网友62ed244
2012-12-04 · TA获得超过1.7万个赞
知道大有可为答主
回答量:2460
采纳率:90%
帮助的人:1789万
展开全部
先求Q的静电场:
  由麦克斯韦方程组的第一个方程的真空形式div(E)=ρ/ε0与一般形式div(D)=ρ具有相同形式,以及div(E)=ρ/ε0对应的积分形式的高斯定理关于点电荷周围电场的求解方法(借助于球对称),可知不论是否有介质,Q在距离其r处的电位移总是D=Q/(4πrr)。上半空间中D=ε0*E,下半空间中D=s*ε0*E',所以,上下半空间中的电场分别为E=Q/(4π*ε0*rr),E'=Q/(4πs*ε0*rr)。
再求p受到的静电力:
鉴于实际不存在点电荷,故将其视为足够小的小球是合理的。由对称性考虑,小球应均匀带电,一半球体位于上半空间的真空里,一半在介质里……F=(p/2)E+(p/2)E'=[(Qp/2)/(4π*ε0*dd)](1+1/s)。
追问
感谢。请问P的静电力如何算呢?将其视为上下两个电容器吗?由于字数限制,还是稍有不明白?能否将过程email至lcdmno@163.com.
追答
我上面已说过——故将其视为足够小的小球是合理的。由对称性考虑,小球应均匀带电,一半球体位于上半空间的真空里,一半在介质里——上半个小球带p/2的电量,由于足够小,可视为带p/2电量的点电荷,它在上半空间里是处于E=Q/(4π*ε0*dd)的电场中,故受力为(p/2)E=(Qp/2)/(4π*ε0*dd);同理,下半小球受力为(p/2)E'=(Qp/2)/(4π*s*ε0*dd)……
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
华芯测试
2024-09-01 广告
电学测试台是深圳市华芯测试科技有限公司的核心设备之一,它集成了高精度测量仪器与自动化控制系统,专为半导体芯片、电子元件及模块的电性能检测而设计。该测试台能够迅速、准确地完成电压、电流、电阻、电容及频率等关键参数的测试,确保产品质量符合行业标... 点击进入详情页
本回答由华芯测试提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式