已知函数f(x)=sinωxsin(ωx+π/3)+cos^2ωx(x>0)的最小正周期为π(1)
已知函数f(x)=sinωxsin(ωx+π/3)+cos^2ωx(x>0)的最小正周期为π(1)求ω的值(2)求函数f(x)在区间[-π/6,7π...
已知函数f(x)=sinωxsin(ωx+π/3)+cos^2ωx(x>0)的最小正周期为π(1)求ω的值(2)求函数f(x)在区间[-π/6,7π/12]的取值范围
展开
1个回答
展开全部
已知函数f(x)=sinωxsin(ωx+π/3)+cos^2ωx(x>0)的最小正周期为π(1)求ω的值(2)求函数f(x)在区间[-π/6,7π/12]的取值范围
(1)解析:f(x)=sinωxsin(ωx+π/3)+cos^2ωx=1/2sin^2ωx+√3/2sinωxcosωx+cos^2ωx
=1/2sin^2ωx+√3/4sin2ωx+cos^2ωx=1/2+√3/4sin2ωx+1/4(1+cos2ωx)
=3/4+√3/4sin2ωx+1/4cos2ωx=3/4+1/2sin(2ωx+π/6)
因为,f(x)的最小正周期为π
所以,2ω=2==>ω=1
(2)解析:因为,f(x)=3/4+1/2sin(2x+π/6)
单调增区间:2kπ-π/2<=2x+π/6<=2kπ+π/2==>kπ-π/3<=x<=kπ+π/6
因为,在区间[-π/6,7π/12]
f(-π/6)=3/4+1/2sin(-π/3+π/6)=1/2
f(7π/12)=3/4+1/2sin(7π/6+π/6)=3/4-√3/4
所以,函数f(x)在区间[-π/6,7π/12]的取值范围为[3/4-√3/4,5/4]
(1)解析:f(x)=sinωxsin(ωx+π/3)+cos^2ωx=1/2sin^2ωx+√3/2sinωxcosωx+cos^2ωx
=1/2sin^2ωx+√3/4sin2ωx+cos^2ωx=1/2+√3/4sin2ωx+1/4(1+cos2ωx)
=3/4+√3/4sin2ωx+1/4cos2ωx=3/4+1/2sin(2ωx+π/6)
因为,f(x)的最小正周期为π
所以,2ω=2==>ω=1
(2)解析:因为,f(x)=3/4+1/2sin(2x+π/6)
单调增区间:2kπ-π/2<=2x+π/6<=2kπ+π/2==>kπ-π/3<=x<=kπ+π/6
因为,在区间[-π/6,7π/12]
f(-π/6)=3/4+1/2sin(-π/3+π/6)=1/2
f(7π/12)=3/4+1/2sin(7π/6+π/6)=3/4-√3/4
所以,函数f(x)在区间[-π/6,7π/12]的取值范围为[3/4-√3/4,5/4]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询