一般的,如果函数f(x)的图像关于点(a,b)对称,那么对定义域内的任意x,则f(x)+f(2a-x)=2b恒成立
已知函数f(x)=4^x/4^x+m的定义域为R,其图像关于点M(1/2,1/2)对称(1)求常数m的值(2)解方程:log2底[1-f(x)]log2底[4^-xf(x...
已知函数f(x)=4^x/4^x+m的定义域为R,其图像关于点M(1/2,1/2)对称
(1)求常数m的值
(2)解方程:log2底[1-f(x)]log2底[4^-xf(x)]=2
(3)求值:f(1/2012)+f(2/2012)+...+f(2011/2012)+f(2012/2012) 展开
(1)求常数m的值
(2)解方程:log2底[1-f(x)]log2底[4^-xf(x)]=2
(3)求值:f(1/2012)+f(2/2012)+...+f(2011/2012)+f(2012/2012) 展开
展开全部
(1) a = 1/2, f(2a - x) = f(1-x) = 4^(1-x)/[4^(1-x) + m]
= 4/(4 +m*4^x)
b = 1/2, f(x) + f(2a -x) = 1 = 4^x/(4^x+ m) + 4/(4 +m*4^x)
= (4^x + m-m)/(4^x+ m) + 4/(4 +m*4^x)
= 1 - m/(4^x+ m) + 4/(4 +m*4^x)
m/(4^x+ m) = 4/(4 +m*4^x)
4*4^x + 4m = 4m+ m²*4^x
m² = 4
m = ±2
定义域为R, 舍去m = -2 (此时在x = 1/2处无定义)
(2)似乎有问题
(3) f(1/2012)+f(2/2012)+...+f(2011/2012)+f(2012/2012)
= [f(1/2012) + f(2011/2012)] + [f(2/2012) + f(2010/2012)] + ... + [f(1005/2012) + f(1007/2012)] + f(1006/2012) + f(2012/2012)
= 1 + 1 + ... + 1 + f(1/2) + f(1)
= 1005 + f(1/2) + f(1)
和为1005+ √4/(√4 + 2) + 4/(4 + 2) = 1005 + 1/2 + 2/3 = 1006+1/6
= 4/(4 +m*4^x)
b = 1/2, f(x) + f(2a -x) = 1 = 4^x/(4^x+ m) + 4/(4 +m*4^x)
= (4^x + m-m)/(4^x+ m) + 4/(4 +m*4^x)
= 1 - m/(4^x+ m) + 4/(4 +m*4^x)
m/(4^x+ m) = 4/(4 +m*4^x)
4*4^x + 4m = 4m+ m²*4^x
m² = 4
m = ±2
定义域为R, 舍去m = -2 (此时在x = 1/2处无定义)
(2)似乎有问题
(3) f(1/2012)+f(2/2012)+...+f(2011/2012)+f(2012/2012)
= [f(1/2012) + f(2011/2012)] + [f(2/2012) + f(2010/2012)] + ... + [f(1005/2012) + f(1007/2012)] + f(1006/2012) + f(2012/2012)
= 1 + 1 + ... + 1 + f(1/2) + f(1)
= 1005 + f(1/2) + f(1)
和为1005+ √4/(√4 + 2) + 4/(4 + 2) = 1005 + 1/2 + 2/3 = 1006+1/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询