高数总会遇到点问题,隐函数的求导,各位,麻烦了!
展开全部
这是参数参数方程的二阶导数问题.
dy/dx=y'(t)/x'(t)=(sint+tcost)/(-sint)
则d^2y/dx^2
=[(dy/dx)/dt]/(dx/dt) 注意:分母是x对t求导!
=[(sint+tcost)/(-sint)]'/(acost)'
=[(-1-tcott]'/(-asint)
=[(-cott-t*(-csc^2 t)]'/(-asint)
=(cott-t*csc^2 t)/(asint)
=(cost/sint-t/sin^2 t)/(asint)
=(costsint-t)/(asin^3t)
dy/dx=y'(t)/x'(t)=(sint+tcost)/(-sint)
则d^2y/dx^2
=[(dy/dx)/dt]/(dx/dt) 注意:分母是x对t求导!
=[(sint+tcost)/(-sint)]'/(acost)'
=[(-1-tcott]'/(-asint)
=[(-cott-t*(-csc^2 t)]'/(-asint)
=(cott-t*csc^2 t)/(asint)
=(cost/sint-t/sin^2 t)/(asint)
=(costsint-t)/(asin^3t)
追问
这个看起来挺困难的啊
追答
自然的,这是参数方程的二阶导数啊!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询