展开全部
∫ sinx/(1+sinx) dx
=∫ (sinx+1-1)/(1+sinx) dx
=∫ 1 dx - ∫ 1/(1+sinx) dx
万能代换:令tan(x/2)=u,则x=2arctanu,dx=2/(1+u²)du,sinx=2u/(1+u²)
=x - ∫ 1/[1+2u/(1+u²)][2/(1+u²)] du
=x - 2∫ 1/(1+u²+2u) du
=x - 2∫ 1/(1+u)² du
=x + 2/(1+u) + C
=x + 2/[1+tan(x/2)] + C
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
=∫ (sinx+1-1)/(1+sinx) dx
=∫ 1 dx - ∫ 1/(1+sinx) dx
万能代换:令tan(x/2)=u,则x=2arctanu,dx=2/(1+u²)du,sinx=2u/(1+u²)
=x - ∫ 1/[1+2u/(1+u²)][2/(1+u²)] du
=x - 2∫ 1/(1+u²+2u) du
=x - 2∫ 1/(1+u)² du
=x + 2/(1+u) + C
=x + 2/[1+tan(x/2)] + C
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询