求问一道高数题,隐函数求导
1个回答
展开全部
方程组两边对y求导:
2y + z+y z'y - z'y t^2 - 2zt t'y = 0 ==> (y-t^2) z'y - 2zt t'y = -2y-z
t'y e^z + t e^z z'y + z'y sint + z cost t'y = 0 ==> (t e^z + sint) z'y + (e^z + z cost) t'y = 0
解得:z'y = -(2y+z)(ez + zcost)/W; z't = (2y+z)(t e^z + sint)/W
u'y = f'y + f't t'y + f'z z'y
答案:C
2y + z+y z'y - z'y t^2 - 2zt t'y = 0 ==> (y-t^2) z'y - 2zt t'y = -2y-z
t'y e^z + t e^z z'y + z'y sint + z cost t'y = 0 ==> (t e^z + sint) z'y + (e^z + z cost) t'y = 0
解得:z'y = -(2y+z)(ez + zcost)/W; z't = (2y+z)(t e^z + sint)/W
u'y = f'y + f't t'y + f'z z'y
答案:C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询