对角矩阵怎么算

 我来答
郑芬多老师
高粉答主

2020-11-23 · 专注文化艺术、平面设计等相关领域
郑芬多老师
采纳数:80823 获赞数:1209208

向TA提问 私信TA
展开全部
对角矩阵的方法:求出一个矩阵的全部互异的特征值a1。a2。对每个特特征值,求特征矩阵a1I-A的秩。当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系。

对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。

推论:

若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。

说明:当A的特征方程有重根时.就不一定有n个线性无关的特征向量,从而未必能对角化。

只有对角线上有非0元素的矩阵称为对角矩阵,或说若一个方阵除了主对角线上的元素外,其余元素都等于零,则称之为对角阵。

主对角线上方元素都为零的方阵,称为下三角阵。

对角阵既是上三角阵,盯李中又是下三角阵。

矩阵的对角线有许多性质,如做扰裤转置运算时对角线元素不变、相似变换时对角线的和(称为矩阵的迹)不变等。在研究矩阵时,很多时候需要将矩阵的对角线上的元素提取出来形成一个凯山列向量,而有时又需要用一个向量构造一个对角阵。
斜阳欲落处一望黯销魂

2020-11-23 · TA获得超过2.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:71%
帮助的人:361万
展开全部
对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。若n阶矩阵A有n个不脊汪隐同的特征值,则A必能相似于对角陵旁矩阵。
说明:当A的特征方程有重根时.就不樱厅一定有n个线性无关的特征向量,从而未必能对角化。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式