求高手解高中数学题,过程需详细,谢谢。
已知向量m=(2cosx,根号3cosx-sinx),n=(sin(x+派/6),sinx),且满足f(x)=m·n。(1)求函数y=f(x)的单调递增区间;(2)设三角...
已知向量m=(2cosx,根号3cosx-sinx),n=(sin(x+派/6),sinx),且满足f(x)=m·n。(1)求函数y=f(x)的单调递增区间;(2)设三角形ABC的内角A满足f(A)=2,a、b、c分别为角A、B、C所对的边,且向量AB·向量AC=根号3,求边BC的最小值。
展开
展开全部
向量m=(2cosx,√3cosx-sinx),n=(sin(x+π/6),sinx),且满足f(x)=m·n
f(x)=m·n
=2√3sinxcosx+cos²x-sin²x
=√3sin2x+cos2x
=2sin(2x+π/6)
(1).由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z,得:
kπ-π/3≤x≤kπ+π/6,k∈Z,
∴(x)的单调递增区间为: [kπ-π/3,kπ+π/6],(k∈Z)
(2).∵f(A)=2sin(2A+π/6)=2
∴sin(2A+π/6)=1
又∵0<A<π,故:π/6<2A+π/6<13π/6
∴2A+π/6=π/2
∴A=π/6
向量AB·向量AC=bccosA =√3bc/2=√3
∴bc=2
BC²=a²
=b²+c²-2bccosA
=b²+c²-2√3
≥2bc-2√3
=4-2√3
=(√3-1)²
∴BC≥√3-1
f(x)=m·n
=2√3sinxcosx+cos²x-sin²x
=√3sin2x+cos2x
=2sin(2x+π/6)
(1).由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z,得:
kπ-π/3≤x≤kπ+π/6,k∈Z,
∴(x)的单调递增区间为: [kπ-π/3,kπ+π/6],(k∈Z)
(2).∵f(A)=2sin(2A+π/6)=2
∴sin(2A+π/6)=1
又∵0<A<π,故:π/6<2A+π/6<13π/6
∴2A+π/6=π/2
∴A=π/6
向量AB·向量AC=bccosA =√3bc/2=√3
∴bc=2
BC²=a²
=b²+c²-2bccosA
=b²+c²-2√3
≥2bc-2√3
=4-2√3
=(√3-1)²
∴BC≥√3-1
展开全部
解:1、f(x)=m*n=(cosx+sinx)(cosx-sinx)+2√3sinxcosx=cos²x-sin²x+√3sin2x=cos2x+√3sin2x=2sin(2x+π/6),单调增区间:2kπ-π/2≤2x+π/6≤2kπ+π/2,得:kπ-π/3≤x≤kπ+π/6,增区间是[kπ-π/3,kπ+π/6],其中k是整数。
2、f(A)=1,得:sin(2A+π/6)=1,则A=π/6。因a/sinA=b/sinB=c/sinC,则:a/sinA=(b+c)/(sinB+sinC),代入,得:sinB+sinC=1,sinB+sin(120°-B)=1,sinB+(√3/2)cosB-(1/2)sinB=1,(1/2)sinB+(√3/2)cosB=1,sin(B+π/3)=1,得:B=30°,所以C=120°
3、根号3-1
2、f(A)=1,得:sin(2A+π/6)=1,则A=π/6。因a/sinA=b/sinB=c/sinC,则:a/sinA=(b+c)/(sinB+sinC),代入,得:sinB+sinC=1,sinB+sin(120°-B)=1,sinB+(√3/2)cosB-(1/2)sinB=1,(1/2)sinB+(√3/2)cosB=1,sin(B+π/3)=1,得:B=30°,所以C=120°
3、根号3-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询