求数列的前n项和 求此数列的前n项和 bn=1/[n(n+2)]
1个回答
展开全部
bn=1/2[1/n-1/(n+2)]
b1=1/2(1/1-1/3)
b2=1/2(1/2-1/4)
b3=1/2(1/3-1/5)
b4=1/2(1/4-1/6)
b5=1/2(1/5-1/7)
.
bn-1=1/2[1/(n-1)-1/(n+1)]
bn=1/2[1/n-1/(n+2)]
S=b1+b2+b3+.+bn-1+bn
=1/2(1+1/2-1/n+1-1/n+2)
=3/4-(n+3/2)/(n+1)(n+2)
b1=1/2(1/1-1/3)
b2=1/2(1/2-1/4)
b3=1/2(1/3-1/5)
b4=1/2(1/4-1/6)
b5=1/2(1/5-1/7)
.
bn-1=1/2[1/(n-1)-1/(n+1)]
bn=1/2[1/n-1/(n+2)]
S=b1+b2+b3+.+bn-1+bn
=1/2(1+1/2-1/n+1-1/n+2)
=3/4-(n+3/2)/(n+1)(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询