如图 以M( 5 o)为圆心,4为半径的圆与x轴交于A,B两 点 P是⊙M上异于A,B的一动点
直线PA、PB分别交y轴于C、D以CD为直径的⊙N与x轴交于E、F则EF的长(▲)A等于42Bᙧ...
直线PA、PB分别交y 轴于C、D以CD为直径的⊙N与x轴交于E、F则EF的长 ( ▲ ) A等于4 2 B等于4 3 C等于6 D随P点位置的变化而变化
展开
4个回答
展开全部
设圆N半径为r,ON=x,则OD=r-x,OC=r+x,
∵以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,
∴OA=4+5=9,0B=5-4=1,
∵AB是⊙M的直径,
∴∠APB=90°(直径所对的圆周角是直角),
∵∠BOD=90°,
∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°,
∵∠PBA=∠OBD,
∴∠PAB=∠ODB,
∵∠APB=∠BOD=90°,
∴△OBD∽△OCA,
∴OCOB=OAOD,
即r+x1=9r-x,
解得:(r+x)(r-x)=9,
r2-x2=9,
由垂径定理得:OE=OF,OE2=EN2-ON2=r2-x2=9,
即OE=OF=3,
∴EF=2OE=6,
∵以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,
∴OA=4+5=9,0B=5-4=1,
∵AB是⊙M的直径,
∴∠APB=90°(直径所对的圆周角是直角),
∵∠BOD=90°,
∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°,
∵∠PBA=∠OBD,
∴∠PAB=∠ODB,
∵∠APB=∠BOD=90°,
∴△OBD∽△OCA,
∴OCOB=OAOD,
即r+x1=9r-x,
解得:(r+x)(r-x)=9,
r2-x2=9,
由垂径定理得:OE=OF,OE2=EN2-ON2=r2-x2=9,
即OE=OF=3,
∴EF=2OE=6,
展开全部
解:连接NE,
设圆N半径为r,ON=x,则OD=r-x,OC=r+x,
∵以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,
∴OA=4+5=9,0B=5-4=1,
∵AB是⊙M的直径,
∴∠APB=90°(直径所对的圆周角是直角),
∵∠BOD=90°,
∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°,
∵∠PBA=∠OBD,
∴∠PAB=∠ODB,
∵∠APB=∠BOD=90°,
∴△OBD∽△OCA,
∴OCOB=OAOD,
即r+x1=9r-x,
解得:(r+x)(r-x)=9,
r2-x2=9,
由垂径定理得:OE=OF,OE2=EN2-ON2=r2-x2=9,
即OE=OF=3,
∴EF=2OE=6,
故选C.
参考资料: http://www.jyeoo.com/math/ques/detail/2277c68f-3b37-4c8b-9589-13374c3b8ef0?a=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:连接NE,
设圆N半径为r,ON=x,则OD=r-x,OC=r+x,
∵以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,
∴OA=4+5=9,0B=5-4=1,
∵AB是⊙M的直径,
∴∠APB=90°(直径所对的圆周角是直角),
∵∠BOD=90°,
∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°,
∵∠PBA=∠OBD,
∴∠PAB=∠ODB,
∵∠APB=∠BOD=90°,
∴△OBD∽△OCA,
∴OCOB=OAOD,
即r+x1=9r-x,
(r+x)(r-x)=9,
r2-x2=9,
由垂径定理得:OE=OF,OE2=EN2-ON2=r2-x2=9,
即OE=OF=3,
∴EF=2OE=6,
故选C.
设圆N半径为r,ON=x,则OD=r-x,OC=r+x,
∵以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,
∴OA=4+5=9,0B=5-4=1,
∵AB是⊙M的直径,
∴∠APB=90°(直径所对的圆周角是直角),
∵∠BOD=90°,
∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°,
∵∠PBA=∠OBD,
∴∠PAB=∠ODB,
∵∠APB=∠BOD=90°,
∴△OBD∽△OCA,
∴OCOB=OAOD,
即r+x1=9r-x,
(r+x)(r-x)=9,
r2-x2=9,
由垂径定理得:OE=OF,OE2=EN2-ON2=r2-x2=9,
即OE=OF=3,
∴EF=2OE=6,
故选C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
选C
追问
知道 为什么 过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询