如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF...
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)若AP为1,四边形EFGP的面积为S,求出S的值。
(这本是德州的中考题,最后一小问略有改动,只求最后一小题的解,前面两个我都证得到)
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 展开
(这本是德州的中考题,最后一小问略有改动,只求最后一小题的解,前面两个我都证得到)
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 展开
7个回答
展开全部
.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
考点: 翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质。
分析: (1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.
解答: (1)解:如图1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)△PHD的周长不变为定值8.
证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
∴△ABP≌△QBP.
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△BPA.
∴EM=AP=x.
∴在Rt△APE中,(4﹣BE)2+x2=BE2.
解得, .
∴ .
又四边形PEFG与四边形BEFC全等,
∴ .
即: .
配方得, ,
∴当x=2时,S有最小值6
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
考点: 翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质。
分析: (1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.
解答: (1)解:如图1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)△PHD的周长不变为定值8.
证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
∴△ABP≌△QBP.
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△BPA.
∴EM=AP=x.
∴在Rt△APE中,(4﹣BE)2+x2=BE2.
解得, .
∴ .
又四边形PEFG与四边形BEFC全等,
∴ .
即: .
配方得, ,
∴当x=2时,S有最小值6
展开全部
1解如图1∵PE=BE
∴∠EBP=∠EPB
又∵∠EPH=∠EBC=90°
∴∠EPH∠EPB=∠EBC∠EBP
即∠PBC=∠BPH
又∵AD∥BC
∴∠APB=∠PBC
∴∠APB=∠BPH
2△PHD的周长不变为定值8
证明如图2过B作BQ⊥PH垂足为Q
由1知∠APB=∠BPH
又∵∠A=∠BQP=90°BP=BP
∴△ABP≌△QBP
∴AP=QPAB=BQ
又∵AB=BC ∴BC=BQ
又∵∠C=∠BQH=90°BH=BH
∴△BCH≌△BQH ∴CH=QH
∴△PHD的周长为PD+DH+PH=AP+PD+DH+HC=AD+CD=8
3如图3过F作FM⊥AB垂足为M则FM=BC=AB
又∵EF为折痕
∴EF⊥BP
∴∠EFM+∠MEF=∠ABP+∠BEF=90°
∴∠EFM=∠ABP
又∵∠A=∠EMF=90°
∴△EFM≌△BPA
∴EM=AP=x
∴在Rt△APE中 (4-BE)平方+x平方=BE平方 解得BE=2+X平方/8
∴ CF=BE-EM=2+X的平方/8-X 又四边形PEFG与四边形BEFC全等
∴ S=1/2X的平方-2X+8 配方得S=1/2(X-2)的平方+6
∴当x=2时S有最小值6
coco团队为您解答,如果您采纳,是我们的幸运!!!
∴∠EBP=∠EPB
又∵∠EPH=∠EBC=90°
∴∠EPH∠EPB=∠EBC∠EBP
即∠PBC=∠BPH
又∵AD∥BC
∴∠APB=∠PBC
∴∠APB=∠BPH
2△PHD的周长不变为定值8
证明如图2过B作BQ⊥PH垂足为Q
由1知∠APB=∠BPH
又∵∠A=∠BQP=90°BP=BP
∴△ABP≌△QBP
∴AP=QPAB=BQ
又∵AB=BC ∴BC=BQ
又∵∠C=∠BQH=90°BH=BH
∴△BCH≌△BQH ∴CH=QH
∴△PHD的周长为PD+DH+PH=AP+PD+DH+HC=AD+CD=8
3如图3过F作FM⊥AB垂足为M则FM=BC=AB
又∵EF为折痕
∴EF⊥BP
∴∠EFM+∠MEF=∠ABP+∠BEF=90°
∴∠EFM=∠ABP
又∵∠A=∠EMF=90°
∴△EFM≌△BPA
∴EM=AP=x
∴在Rt△APE中 (4-BE)平方+x平方=BE平方 解得BE=2+X平方/8
∴ CF=BE-EM=2+X的平方/8-X 又四边形PEFG与四边形BEFC全等
∴ S=1/2X的平方-2X+8 配方得S=1/2(X-2)的平方+6
∴当x=2时S有最小值6
coco团队为您解答,如果您采纳,是我们的幸运!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
23.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
考点: 翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质。
分析: (1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.
解答: (1)解:如图1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)△PHD的周长不变为定值8.
证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
∴△ABP≌△QBP.
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△BPA.
∴EM=AP=x.
∴在Rt△APE中,(4﹣BE)2+x2=BE2.
解得, .
∴ .
又四边形PEFG与四边形BEFC全等,
∴ .
即: .
配方得, ,
∴当x=2时,S有最小值6
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
考点: 翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质。
分析: (1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.
解答: (1)解:如图1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)△PHD的周长不变为定值8.
证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
∴△ABP≌△QBP.
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△BPA.
∴EM=AP=x.
∴在Rt△APE中,(4﹣BE)2+x2=BE2.
解得, .
∴ .
又四边形PEFG与四边形BEFC全等,
∴ .
即: .
配方得, ,
∴当x=2时,S有最小值6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)解:如图1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)△PHD的周长不变为定值8.
证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中
∠APB=∠BPH∠A=∠BQPBP=BP
,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△BPA.
∴EM=AP=x.
∴在Rt△APE中,(4-BE)2+x2=BE2.
解得,BE=2+
x2
8
.
∴CF=BE-EM=2+
x2
8
-x.
又∵四边形PEFG与四边形BEFC全等,
∴S=
1
2
(BE+CF)BC=
1
2
(4+
x2
4
-x)×4.
即:S=
1
2
x2-2x+8.
配方得,S=
1
2
(x-2)2+6,
∴当x=2时,S有最小值6.
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)△PHD的周长不变为定值8.
证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中
∠APB=∠BPH∠A=∠BQPBP=BP
,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△BPA.
∴EM=AP=x.
∴在Rt△APE中,(4-BE)2+x2=BE2.
解得,BE=2+
x2
8
.
∴CF=BE-EM=2+
x2
8
-x.
又∵四边形PEFG与四边形BEFC全等,
∴S=
1
2
(BE+CF)BC=
1
2
(4+
x2
4
-x)×4.
即:S=
1
2
x2-2x+8.
配方得,S=
1
2
(x-2)2+6,
∴当x=2时,S有最小值6.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以做,但起码50分钟
不值
不值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询