已知f(x)=-sinx*sinx+sinx+a,若1≤f(x)≤17/4对任意的实数R恒成立,求实数a的取值范围
展开全部
F(X)=-SIN^2X+SINX+A
=-(sinx-1/2)^2+A+1/4
因为:-1<=sinx<=1,所以-3/2<=sinx-1/2<=1/2,
-9/4<=-(sinx-1/2)^2<=0,
a-2<=f(x)<=a+1/4
又有:1=<F(X)=<17/4
则:
1<=a-2,
a+1/4<=17/4
解得
a>=3,
a<=4
实数A取值范围3<=A<=4.
=-(sinx-1/2)^2+A+1/4
因为:-1<=sinx<=1,所以-3/2<=sinx-1/2<=1/2,
-9/4<=-(sinx-1/2)^2<=0,
a-2<=f(x)<=a+1/4
又有:1=<F(X)=<17/4
则:
1<=a-2,
a+1/4<=17/4
解得
a>=3,
a<=4
实数A取值范围3<=A<=4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=a+1/4-(sinx-1/2)^2 => 0<=a+1/4-f(x)<=9/4 => a-2<=f(x)<=a+1/4 => 3<=a<=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询