求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX. 简单 谢谢!!!!
2个回答
展开全部
极坐标标
∫∫ √(R²-x²-y²) dxdy
=∫∫ r√(R²-r²) drdθ
=∫[-π/2→π/2] dθ∫[0→Rcosθ] r√(R²-r²) dr
=(1/2)∫[-π/2→π/2] dθ∫[0→Rcosθ] √(R²-r²) d(r²)
=-(1/2)(2/3)∫[-π/2→π/2] (R²-r²)^(3/2) |[0→Rcosθ] dθ
=(1/3)∫[-π/2→π/2] (R³-R³|sinθ|³) dθ
=(2R³/3)∫[0→π/2] (1-sin³θ) dθ
=(2R³/3)[∫[0→π/2] 1 dθ - ∫[0→π/2] sin³θ dθ]
=(2R³/3)[π/2 + ∫[0→π/2] sin²θ d(cosθ)]
=(2R³/3)[π/2 + ∫[0→π/2] (1-cos²θ) d(cosθ)]
=(2R³/3)[π/2 + θ - (1/3)cos³θ] |[0→π/2]
=(2R³/3)[π/2 + π/2 - 0]
=2πR³/3
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
∫∫ √(R²-x²-y²) dxdy
=∫∫ r√(R²-r²) drdθ
=∫[-π/2→π/2] dθ∫[0→Rcosθ] r√(R²-r²) dr
=(1/2)∫[-π/2→π/2] dθ∫[0→Rcosθ] √(R²-r²) d(r²)
=-(1/2)(2/3)∫[-π/2→π/2] (R²-r²)^(3/2) |[0→Rcosθ] dθ
=(1/3)∫[-π/2→π/2] (R³-R³|sinθ|³) dθ
=(2R³/3)∫[0→π/2] (1-sin³θ) dθ
=(2R³/3)[∫[0→π/2] 1 dθ - ∫[0→π/2] sin³θ dθ]
=(2R³/3)[π/2 + ∫[0→π/2] sin²θ d(cosθ)]
=(2R³/3)[π/2 + ∫[0→π/2] (1-cos²θ) d(cosθ)]
=(2R³/3)[π/2 + θ - (1/3)cos³θ] |[0→π/2]
=(2R³/3)[π/2 + π/2 - 0]
=2πR³/3
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
追问
你错了,答案是1/3R^3(π-4/3)
追答
倒数第三步时出错了,从倒数第四步开始
=(2R³/3)[π/2 + ∫[0→π/2] (1-cos²θ) d(cosθ)]
=(2R³/3)[π/2 + cosθ - (1/3)cos³θ] |[0→π/2]
=(2R³/3)[π/2 -1 + 1/3]
=(2R³/3)[π/2 - 2/3]
=(R³/3)[π - 4/3]
2012-12-04
展开全部
用极坐标来做。x²+y²=Rx,得到r²=Rrcosθ,则r=Rcosθ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询