展开全部
求出函数在(x0,y0)点的导数值
导数值就是函数在x0点的切线的斜率值。之后代入该点坐标(x0,y0),用点斜式就可以求得切线方程
当导数值为0,改点的切线就是y=y0
当导数不存在,切线就是x=x0
当在该点不可导,则不存在切线
导数值就是函数在x0点的切线的斜率值。之后代入该点坐标(x0,y0),用点斜式就可以求得切线方程
当导数值为0,改点的切线就是y=y0
当导数不存在,切线就是x=x0
当在该点不可导,则不存在切线
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
导数求曲线的切线方程,这也是要先求出导,然后算出导的y值,就是切线的斜率,把切点和斜率结合一起,根据点斜式,即可求出切线方程。
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(o)及斜率,其求法为:设P(o,o)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-%=f'(x)x-).若曲线y=f()在点P(xf()的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x·
求切线方程是比较简单的内容,这个类型的题目最好不要出错,丢分太可惜。如果求极值,最值,需要分类讨论的,大家可以把导数求出来,然后求出导数的零点,再根据实际情况答题。
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(o)及斜率,其求法为:设P(o,o)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-%=f'(x)x-).若曲线y=f()在点P(xf()的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x·
求切线方程是比较简单的内容,这个类型的题目最好不要出错,丢分太可惜。如果求极值,最值,需要分类讨论的,大家可以把导数求出来,然后求出导数的零点,再根据实际情况答题。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询