已知圆C1(x+1)^2+y^2=1和圆C2(x-1)^2+y^2=9,求与圆C1外切而内切于圆C2的动圆圆心P的轨迹方程
1个回答
展开全部
C1圆心:C1(-1,0),半径1
C2圆心:C2(1,0),半径3
设P点:(x,y),动圆半径为r
则PC1长=C1半径+r
PC2长=C2半径-r
即:
(x+1)²+y²=(1+r)² (1)
(x-1)²+y²=(3-r)² (2)
由(1)得:r1=-1+√(x²+2x+y²+1)
r2=-1-√(x²+2x+y²+1)
因r2<0,舍掉。
把r1代入(2)并整理得:
2√(x²+2x+y²+1)=x+4
两边平方再整理:
3x²+4y²=12
即:x²/4+y²/3=1
轨迹是一个椭圆。
C2圆心:C2(1,0),半径3
设P点:(x,y),动圆半径为r
则PC1长=C1半径+r
PC2长=C2半径-r
即:
(x+1)²+y²=(1+r)² (1)
(x-1)²+y²=(3-r)² (2)
由(1)得:r1=-1+√(x²+2x+y²+1)
r2=-1-√(x²+2x+y²+1)
因r2<0,舍掉。
把r1代入(2)并整理得:
2√(x²+2x+y²+1)=x+4
两边平方再整理:
3x²+4y²=12
即:x²/4+y²/3=1
轨迹是一个椭圆。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询