在Rt三角形ABC中,角C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将三角形ADE沿DE折起到
三角形A1DE的位置,使A1F垂直CD(1)证DE平行平面A1CB(2)证A1F垂直CD(3)线段A1B上是否存在点Q,使A1C垂直平面DEQ?说明理由第三问答对悬赏加2...
三角形A1DE的位置,使A1F垂直CD
(1)证DE平行平面A1CB
(2)证A1F垂直CD
(3)线段A1B上是否存在点Q,使A1C垂直平面DEQ?说明理由
第三问答对悬赏加20 展开
(1)证DE平行平面A1CB
(2)证A1F垂直CD
(3)线段A1B上是否存在点Q,使A1C垂直平面DEQ?说明理由
第三问答对悬赏加20 展开
2个回答
展开全部
解:(1)∵D,E分别为AC,AB的中点,
∴DE∥BC,又DE⊄平面A1CB,
∴DE∥平面A1CB,
(2)由已知得AC⊥BC且DE∥BC,
∴DE⊥AC,
∴DE⊥A1D,又DE⊥CD,
∴DE⊥平面A1DC,而A1F⊂平面A1DC,
∴DE⊥A1F,又A1F⊥CD,
∴A1F⊥平面BCDE,
∴A1F⊥BE.
(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.
∵DE∥BC,
∴DE∥PQ.
∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC,
∴DE⊥A1C,
又∵P是等腰三角形DA1C底边A1C的中点,
∴A1C⊥DP,
∴A1C⊥平面DEP,从而A1C⊥平面DEQ,
故线段A1B上存在点Q,使A1C⊥平面DEQ
∴DE∥BC,又DE⊄平面A1CB,
∴DE∥平面A1CB,
(2)由已知得AC⊥BC且DE∥BC,
∴DE⊥AC,
∴DE⊥A1D,又DE⊥CD,
∴DE⊥平面A1DC,而A1F⊂平面A1DC,
∴DE⊥A1F,又A1F⊥CD,
∴A1F⊥平面BCDE,
∴A1F⊥BE.
(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.
∵DE∥BC,
∴DE∥PQ.
∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC,
∴DE⊥A1C,
又∵P是等腰三角形DA1C底边A1C的中点,
∴A1C⊥DP,
∴A1C⊥平面DEP,从而A1C⊥平面DEQ,
故线段A1B上存在点Q,使A1C⊥平面DEQ
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询