语文归谬法经典例子有哪些?
例子:
反证法在数学中经常运用。当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓"正难则反"。
牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明正面证明有困难,情况多或复杂,而命题的否定则比较浅显的题目,问题可能解决得十分干脆。
反证法的证题可以简要的概括为“否定得出矛盾→否定”。即从否定结论开始,得出矛盾,达到新的否定,可以认为反证法的基本思想就是辩证的“否定之否定”。应用反证法的是:
欲证“若P,则Q”为真命题,从相反结论出发,得出与事实、定理、已知条件、基本事实等矛盾,从而原命题为真命题。
证明步骤
反证法的证明主要用到“一个命题与其逆否命题同真假”的结论,为什么?这个结论可以用穷举法证明:
已知某命题:若A,则B,则此命题有4种情况:
1.当A为真,B为真,则A⇒B为真,得¬B⇒¬A为真;
2.当A为真,B为假,则A⇒B为假,得¬B⇒¬A为假;
3.当A为假,B为真,则A⇒B为真,得¬B⇒¬A为真;
4.当A为假,B为假,则A⇒B为真,得¬B⇒¬A为真;
∴一个命题与其逆否命题同真假。
即反证法是正确的。
假设¬B,推出¬A,就说明逆否命题是真的,那么原命题也是真的。
但实际推证的过程中,推出¬A是相当困难的,所以就转化为了推出与¬A相同效果的内容即可。这个相同效果就是与A(已知条件)矛盾,或是与已知定义、定理、大家都知道的事实等矛盾。
注:关于相等与不等关系(>、=、<),我们有如下的否定形式:
大于反义:小于或等于
都大于 反义:至少有一个不大于
小于 反义:大于或等于
都小于 反义:至少有一个不小于它的逆否命题“若¬B,则¬A”。
以上内容参考:百度百科-反证法