高数求间断点个数,谢谢
lim(x-> 1) f(x)
=lim(x-> 1) [ln|x|/(x^2-1) ] .[e^[1/(x-2)]/( 1+ e^[2/(x-2)] ) ]
=[e^(-1)/( 1+ e^(-2) )] . lim(x-> 1) ln|x|/(x^2-1)
=[e^(-1)/( 1+ e^(-2) )] . lim(x-> 1) lnx/[ (x-1)(x+1)]
=[e^(-1)/( 1+ e^(-2) )] . lim(x-> 1) ln( 1+(x-1)) /[ (x-1)(x+1)]
=[e^(-1)/( 1+ e^(-2) )] . lim(x-> 1) (x-1) /[ (x-1)(x+1)]
=[e^(-1)/( 1+ e^(-2) )] . lim(x-> 1) 1 /(x+1)
=(1/2) [e^(-1)/( 1+ e^(-2) )]
x=1 , 可去间断点
lim(x-> -1) f(x)
=lim(x-> -1) [ln|x|/(x^2-1) ] .[e^[1/(x-2)]/( 1+ e^[2/(x-2)] ) ]
=[e^(-1/3)/( 1+ e^(-2/3) )] . lim(x-> -1) ln|x|/(x^2-1)
=[e^(-1/3)/( 1+ e^(-2/3) )] . lim(x-> -1) ln(-x)/[(x-1)(x+1)]
=[e^(-1/3)/( 1+ e^(-2/3) )] . lim(x-> -1) ln[1+(-x-1)]/[(x-1)(x+1)]
=[e^(-1/3)/( 1+ e^(-2/3) )] . lim(x-> -1) (-x-1)/[(x-1)(x+1)]
=[e^(-1/3)/( 1+ e^(-2/3) )] . lim(x-> -1) -1/(x-1)
=(1/2)[e^(-1/3)/( 1+ e^(-2/3) )]
x=-1 , 可去间断点
lim(x-> 2+) f(x)
=lim(x-> 2+) [ln|x|/(x^2-1) ] .[ e^[1/(x-2)]/( 1+ e^[2/(x-2)] ) ]
=ln2 .lim(x-> 2+) e^[1/(x-2)]/( 1+ e^[2/(x-2)] )
分子分母同时除e^[2/(x-2)]
=ln2 .lim(x-> 2+) { 1/e^[1/(x-2)] } /( 1/e^[2/(x-2)]+ 1 )
=ln2 . [ 0/( 0+ 1 ) ]
=0
lim(x-> 2-) f(x)
=lim(x-> 2-) [ln|x|/(x^2-1) ] .[ e^[1/(x-2)]/( 1+ e^[2/(x-2)] ) ]
=ln2 .lim(x-> 2-) e^[1/(x-2)]/( 1+ e^[2/(x-2)] )
=ln2 . [e^0/( 1+ e^0 ) ]
=(1/2)ln2
≠lim(x-> 2+) f(x)
x=2, 跳跃间断点
ie
2 个可去间断点 : x=1 , x=-1
2021-07-28
f(x)=sinπx,、x、<1/2;
f(x)=0,、x、>1/2
f(x)=-1/2,x=-1/2
f(x)=1/2,x=1/2
函数有2个跳跃间断点x=-1/2,x=1/2。