不定积分 ∫dx/√(x²+1)³的解答过程
2个回答
展开全部
∫dx/√(x²+1)³
令x=tant
dx=sec²tdt
原式=∫sec²t/sec³tdt
=∫costdt
=sint+c
tant=x/1
sint=x/√(x²+1)
所以
原式=x/√(x²+1)+c
令x=tant
dx=sec²tdt
原式=∫sec²t/sec³tdt
=∫costdt
=sint+c
tant=x/1
sint=x/√(x²+1)
所以
原式=x/√(x²+1)+c
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询