1个回答
展开全部
y'=p, p'=p/x+sinp/x
u=p/x,p=ux,p'=u+u'x u+u'x=u+sinu
du/sinu=dx/x
ln(tanu/2)=lnx+lnC1
tanu/2=C1x
u=2arctan(C1x)
y'=p=ux=2xarctan(C1x)
y=∫2xarctan(C1x)dx
=∫arctan(C1x)dx^2
=x^2arctan(C1x)-∫C1x^2/(1+(C1x)^2)
=x^2arctan(C1x)-(1/C1)∫(C1^2x^2+1-1)/(1+(C1x)^2)
=x^2arctan(C1x)-(x/C1)+(1/C1^2)arctanC1x+C2
u=p/x,p=ux,p'=u+u'x u+u'x=u+sinu
du/sinu=dx/x
ln(tanu/2)=lnx+lnC1
tanu/2=C1x
u=2arctan(C1x)
y'=p=ux=2xarctan(C1x)
y=∫2xarctan(C1x)dx
=∫arctan(C1x)dx^2
=x^2arctan(C1x)-∫C1x^2/(1+(C1x)^2)
=x^2arctan(C1x)-(1/C1)∫(C1^2x^2+1-1)/(1+(C1x)^2)
=x^2arctan(C1x)-(x/C1)+(1/C1^2)arctanC1x+C2
更多追问追答
追问
du/sinu=dx/x到ln(tanu/2)=lnx lnc1是怎么弄出来的
追答
两边积分
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询