如图AB是半圆直径,半径OC⊥AB于点O,ADAD平分∠CAB交弧BC于点D,连接CD、OD
给出以下四个结论:①AC∥OD;②;CE=OE③△ODE∽△ADO;④.2CD²=CE·AB其中正确结论的序号是AD平分∠CAB交弧BC于点D...
给出以下四个结论:①AC∥OD;②;CE=OE③△ODE∽△ADO;④.2CD²=CE·AB其中正确结论的序号是
AD平分∠CAB交弧BC于点D 展开
AD平分∠CAB交弧BC于点D 展开
展开全部
解:∵OA=OD,∴∠ADO=∠DAO
又∵AD平分∠CAB,∴∠DAO=∠DAC
∴∠DAC=∠ADO,∴AC∥OD,即结论①正确!
结论②不正确,∵假设CE=OE,则由于AD平分∠CAB,
∴推出AC=AO,而CO⊥AO,∴AC>AO产生矛盾!
结论③不正确,∵假设△ODE∽△ADO,则∠EOD=∠OAD=∠CAD
∴A、O、C、D四点共圆,∴∠ADC=∠COA=90°
∴∠BDC=∠BDA+∠ADC=90°+90°=180°,∴B、D、C三点睁租友共线,然而这是不可能的!
∴产生矛盾,故结论③不正确!
∵∠悉槐CDE =∠CBA=90°-∠CAB=∠ACO=∠COD
∴△CDE∽△COD,∴CD/CO=CE/CD
∴CD^2=CO*CE=1/2AB*CE
∴2CD^2=AB*CE
故结论④正确!
综上,只有结论①与型搜④是正确的!
望采纳!有问题可以追问哈!
又∵AD平分∠CAB,∴∠DAO=∠DAC
∴∠DAC=∠ADO,∴AC∥OD,即结论①正确!
结论②不正确,∵假设CE=OE,则由于AD平分∠CAB,
∴推出AC=AO,而CO⊥AO,∴AC>AO产生矛盾!
结论③不正确,∵假设△ODE∽△ADO,则∠EOD=∠OAD=∠CAD
∴A、O、C、D四点共圆,∴∠ADC=∠COA=90°
∴∠BDC=∠BDA+∠ADC=90°+90°=180°,∴B、D、C三点睁租友共线,然而这是不可能的!
∴产生矛盾,故结论③不正确!
∵∠悉槐CDE =∠CBA=90°-∠CAB=∠ACO=∠COD
∴△CDE∽△COD,∴CD/CO=CE/CD
∴CD^2=CO*CE=1/2AB*CE
∴2CD^2=AB*CE
故结论④正确!
综上,只有结论①与型搜④是正确的!
望采纳!有问题可以追问哈!
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目不完整吧
追问
完整
追答
你看这个结论中有E,但是题目中根本没有出现点E啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-12-06
展开全部
1
追问
是不是还应该有4或3?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询