A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1

 我来答
世纪网络17
2022-06-02 · TA获得超过5910个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:138万
展开全部
A^2+A-4E=O
A^2+A=4E
A(A+E)=4E
A(A+E)/4=E
因此,A可逆,且A^-1=(A+E)/4
A^2+A-4E=O
A^2+A-2E=2E
(A-E)(A+2E)=2E
(A-E)(A+2E)/2=E
因此,A-E可逆,且(A-E)^-1=(A+2E)/
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式