卫星相遇问题物理公式
1个回答
展开全部
卫星相遇问题物理公式:速度和×相遇时间=总路程。
假设:卫星的轨道周长都为1,假设行星与B卫星不动,则A与B的相对速度为(1/Ta-1/Tb),所以A与B的相遇时间间隔是1/(1/Ta-1/Tb)。
C与B的相遇时间间隔是1/(1/Tb-1/Tc),设m,n为整数则当m[1/(1/Ta-1/Tb)]=n[1/(1/Tb-1/Tc)]时四个天体在一条直线上(即B与A,C都在一条直线上)m/n=(1/Ta-1/Tb)/(1/Tb-1/Tc),当m=m1,n=n1时等式成立,则相遇周期为m1[1/(1/Ta-1/Tb)]。
卫星系形成
卫星系的角动量的来源,和行星自转的角动量的来源是一样的,不过,当考虑到卫星的形成问题时,必须像分析行星系的形成过程那样来分析它。
首先,行星系的原始星胚在收缩过程中,由于和行星系形成时一样的原因,会形成一个转动的球体,这个球体在向自身的引力中心收缩中,逐渐变成扁平的星云盘,在星云盘的中央部分,形成行星本体,而在星云盘的外围部分,则形成卫星,分两种情况考虑。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询