已知f(x)是一次函数.且满足3f(x+1)-2f(x-1)=2x+17.
1个回答
展开全部
设f(x)=ax+b
则f(x+1)=a(x+1)+b=ax+a+b
f(x-1)=a(x-1)+b=ax-a+b
∴3f(x+1)-2f(x-1)=2x+17
3(ax+a+b)-2(ax-a+b)=2x+17
3ax+3a+3b-2ax+2a-2b=2x+17
ax+5a+b=2x+17
∴a=2 ①
5a+b=17②
联立①②解得
a=2,b=7
则解析式为f(x)=2x+7
则f(x+1)=a(x+1)+b=ax+a+b
f(x-1)=a(x-1)+b=ax-a+b
∴3f(x+1)-2f(x-1)=2x+17
3(ax+a+b)-2(ax-a+b)=2x+17
3ax+3a+3b-2ax+2a-2b=2x+17
ax+5a+b=2x+17
∴a=2 ①
5a+b=17②
联立①②解得
a=2,b=7
则解析式为f(x)=2x+7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询