相似三角形是怎么证明的?
展开全部
相似三角形是几何中重要的证明模型之一,三角分别相等,三边成比例的两个三角形叫做相似三角形,它可以被理解为相似比为1的相似三角形。
面积比和边长比的关系:
相似三角形的面积比等于边长比的平方,设小三角形的面积为s,底长为a高为h,则小三角形的面积为s等于二分之一乘以a乘以b。设大三角形的面积为S,底长为ka高为kh,则大三角形的面积为S等于二分之一乘以ka乘以kb。
相似三角形的性质:
相似三角形对应角相等,对应边成比例;相似三角形的一切对应线段,包括对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等的比等于相似比;相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询