设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值

火虎生活小达人
高能答主

2021-08-04 · 致力于成为全知道最会答题的人
知道大有可为答主
回答量:5246
采纳率:100%
帮助的人:172万
展开全部

|A+I|=|A+AA^T|=|A|*|I+A^T|=|A|*|I+A|=-|A+I|,其中倒数第二个等号是因为转置得行列式等于本身,移项得结果。n阶行列式等于所有取自不同行不同列的n个元素的乘积的代数和,逆序数为偶数时带正号,逆序数为奇数时带负号,共有n!项。

n阶行列式的性质

性质1 行列互换,行列式不变。

性质2 把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。

性质3 如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

性质4 如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)

性质5 如果行列式中两行(列)成比例,那么行列式为零。

性质6 把一行(列)的倍数加到另一行(列),行列式不变。

性质7 对换行列式中两行(列)的位置,行列式反号。

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
帐号已注销
2020-11-12 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:170万
展开全部

证明:|A+E|

= |A+AA^T|

= |A(E+A^T)|

= |A||(E+A)^T|

= |A||A+E|

所以 |A+E|(1-|A|)=0

因为 |A|

且|^因为AAT=E,所以A为正交矩阵,且|A|<0,所以|A|=-1

|A+E|

=|A+AA^T|

= |A(E+A^T)|

证明假设A特征值为λ,则A^()-1=A^t,特征值相同:λ=1/λ

λ^2=,λ=1.-1

扩展资料:

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

参考资料来源:百度百科-特征值

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友4e10493
2012-12-07 · TA获得超过303个赞
知道小有建树答主
回答量:75
采纳率:0%
帮助的人:75.1万
展开全部
这个证明很简单,过程如下:
1. 由AAT=E可知,A是一个正交矩阵,那么A中任何一个特征值的模都为1;
2. 假设A的所有特征值都是1,那么A的行列式必然等于1,这与A的行列式小于0矛盾,因此假设不成立,所以-1是A的一个特征值,证毕!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lry31383
高粉答主

2012-12-08 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证明: |A+E|
= |A+AA^T|
= |A(E+A^T)|
= |A||(E+A)^T|
= |A||A+E|
所以 |A+E|(1-|A|)=0
因为 |A|<0, 所以 1-|A|≠0
所以 |A+E|=0
所以 -1 是A的特征值.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式