设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
|A+I|=|A+AA^T|=|A|*|I+A^T|=|A|*|I+A|=-|A+I|,其中倒数第二个等号是因为转置得行列式等于本身,移项得结果。n阶行列式等于所有取自不同行不同列的n个元素的乘积的代数和,逆序数为偶数时带正号,逆序数为奇数时带负号,共有n!项。
n阶行列式的性质
性质1 行列互换,行列式不变。
性质2 把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。
性质3 如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。
性质4 如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)
性质5 如果行列式中两行(列)成比例,那么行列式为零。
性质6 把一行(列)的倍数加到另一行(列),行列式不变。
性质7 对换行列式中两行(列)的位置,行列式反号。
2025-01-06 广告
证明:|A+E|
= |A+AA^T|
= |A(E+A^T)|
= |A||(E+A)^T|
= |A||A+E|
所以 |A+E|(1-|A|)=0
因为 |A|
且|^因为AAT=E,所以A为正交矩阵,且|A|<0,所以|A|=-1
|A+E|
=|A+AA^T|
= |A(E+A^T)|
证明假设A特征值为λ,则A^()-1=A^t,特征值相同:λ=1/λ
λ^2=,λ=1.-1
扩展资料:
设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。
[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
参考资料来源:百度百科-特征值
1. 由AAT=E可知,A是一个正交矩阵,那么A中任何一个特征值的模都为1;
2. 假设A的所有特征值都是1,那么A的行列式必然等于1,这与A的行列式小于0矛盾,因此假设不成立,所以-1是A的一个特征值,证毕!
= |A+AA^T|
= |A(E+A^T)|
= |A||(E+A)^T|
= |A||A+E|
所以 |A+E|(1-|A|)=0
因为 |A|<0, 所以 1-|A|≠0
所以 |A+E|=0
所以 -1 是A的特征值.