甲乙两人玩纸牌游戏
甲乙两人玩纸牌游戏,从足够数量的纸牌中取牌,规定每人最多两种取法,甲每次取4张或(4-k)张,乙每次取6张或(6-k)张(k是常数,0小于k,k小于4),经统计,甲共取1...
甲乙两人玩纸牌游戏,从足够数量的纸牌中取牌,规定每人最多两种取法,甲每次取4张或(4-k)张,乙每次取6张或(6-k)张(k是常数,0小于k,k小于4),经统计,甲共取15次,乙共取17次,且乙至少取了一次6张牌,最终两人取牌张数相等,那么纸牌至少有多少张?
展开
展开全部
解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,
则甲取牌(60-ka)张,乙取牌(102-kb)张
则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,
从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,
由题意得,a≤15,b≤16,
又最终两人所取牌的总张数恰好相等,
故k(b-a)=42,而0<k<4,b-a为整数,
则由整除的知识,可得k可为1,2,3,
①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;
②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;
③当k=3时,b-a=14,此时可以符合题意,
综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,
则可使b=16,a=2;b=15,a=1;b=14,a=0;
当b=16,a=2时,a+b最大,a+b=18,
继而可确定k=3,(a+b)=18,
所以N=-3×18+162=108张.
故答案为:108.
则甲取牌(60-ka)张,乙取牌(102-kb)张
则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,
从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,
由题意得,a≤15,b≤16,
又最终两人所取牌的总张数恰好相等,
故k(b-a)=42,而0<k<4,b-a为整数,
则由整除的知识,可得k可为1,2,3,
①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;
②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;
③当k=3时,b-a=14,此时可以符合题意,
综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,
则可使b=16,a=2;b=15,a=1;b=14,a=0;
当b=16,a=2时,a+b最大,a+b=18,
继而可确定k=3,(a+b)=18,
所以N=-3×18+162=108张.
故答案为:108.
展开全部
根据题意,甲至少每次取1张,15次取15张;乙至少取6+(17-1)=22张。因为最终二人牌数相等,故甲至少也要取22张。因此纸牌至少22×2=44张。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先,k可能是1,2,3则甲可以是1,2,3,4张牌,乙可以是3,4,5,6张牌。
因为甲所取张数的数学期望要比乙大,又乙至少有一次6张,因为题目问最少多少牌,所以乙取16x3+6=54,甲取9x4+6x3=54,
因为甲所取张数的数学期望要比乙大,又乙至少有一次6张,因为题目问最少多少牌,所以乙取16x3+6=54,甲取9x4+6x3=54,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询