3个回答
展开全部
x=2-√2
[(x^2-4)/x] .[ (x+2)/(x^2-2x) - (x-1)/(x^2-4x+4) ]/ [ (x^2-2x-8)/x^2]
=[(x-2)(x+2)/x] .[ (x+2)/(x(x-2)) - (x-1)/(x-2)^2 ]/ [ (x-4)(x+2)/x^2]
=[ (x+2)/x - (x-1)/(x-2)/ [ (x-4)/x ]
=[ (x+2) - x(x-1)/(x-2)]/ (x-4)
=[ (x+2)(x-2) - x(x-1) ]/[ (x-4)(x-2)]
=( x-4)/[ (x-4)(x-2)]
=1/(x-2)
=1/(-√2)
=-√2/2
[(x^2-4)/x] .[ (x+2)/(x^2-2x) - (x-1)/(x^2-4x+4) ]/ [ (x^2-2x-8)/x^2]
=[(x-2)(x+2)/x] .[ (x+2)/(x(x-2)) - (x-1)/(x-2)^2 ]/ [ (x-4)(x+2)/x^2]
=[ (x+2)/x - (x-1)/(x-2)/ [ (x-4)/x ]
=[ (x+2) - x(x-1)/(x-2)]/ (x-4)
=[ (x+2)(x-2) - x(x-1) ]/[ (x-4)(x-2)]
=( x-4)/[ (x-4)(x-2)]
=1/(x-2)
=1/(-√2)
=-√2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-07-31
展开全部
[(x^2-4)/x]*[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]÷[(x^2-2x-8)/x^2]
=[(x+2)(x-2)/x]*[(x+2)/x(x-2)-(x-1)/(x-2)^2]*[(x^2)/(x-4)(x+2)]
=[x(x-2)/(x-4)]*[(x^2-4-x^2+x)/x(x-2)^2]
=(x-4)/(x-4)(x-2)
=1/(x-2)
将x=2-√2代入
原式=1/(2-√2-2)=-√2/2
=[(x+2)(x-2)/x]*[(x+2)/x(x-2)-(x-1)/(x-2)^2]*[(x^2)/(x-4)(x+2)]
=[x(x-2)/(x-4)]*[(x^2-4-x^2+x)/x(x-2)^2]
=(x-4)/(x-4)(x-2)
=1/(x-2)
将x=2-√2代入
原式=1/(2-√2-2)=-√2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[(x^2-4)/x]*[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]÷[(x^2-2x-8)/x^2]
=[(x+2)(x-2)/x]*[(x+2)/x(x-2)-(x-1)/(x-2)^2]*[(x^2)/(x-4)(x+2)]
=[x(x-2)/(x-4)]*[(x^2-4-x^2+x)/x(x-2)^2]
=(x-4)/(x-4)(x-2)
=1/(x-2)
将x=2-√2代入
原式=1/(2-√2-2)=-√2/2
=[(x+2)(x-2)/x]*[(x+2)/x(x-2)-(x-1)/(x-2)^2]*[(x^2)/(x-4)(x+2)]
=[x(x-2)/(x-4)]*[(x^2-4-x^2+x)/x(x-2)^2]
=(x-4)/(x-4)(x-2)
=1/(x-2)
将x=2-√2代入
原式=1/(2-√2-2)=-√2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询