
设AB是过抛物线y^=2px焦点F的弦,AB为直径的圆为何与抛物线准线相切
展开全部
取AB中点M
只要证明M到准线的距离等于MA=MB就可以了
作MN⊥准线 AP⊥准线 BQ⊥准线于N,P,Q
根据中位线定理有MN=1/2(AP+BQ)①
而MA=MB=1/2AB=1/2(FA+FB)
根据抛物线的定义,抛物线上的点到准线距离等于到焦点距离
那么FA=AP FB=BQ
所以MA=MB=1/2(FA+FB)=1/2(AP+BQ)②
比较①② 得到MA=MB=MN
于是以M为圆心,AB为半径的圆必和准线相切
只要证明M到准线的距离等于MA=MB就可以了
作MN⊥准线 AP⊥准线 BQ⊥准线于N,P,Q
根据中位线定理有MN=1/2(AP+BQ)①
而MA=MB=1/2AB=1/2(FA+FB)
根据抛物线的定义,抛物线上的点到准线距离等于到焦点距离
那么FA=AP FB=BQ
所以MA=MB=1/2(FA+FB)=1/2(AP+BQ)②
比较①② 得到MA=MB=MN
于是以M为圆心,AB为半径的圆必和准线相切
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2024-11-19 广告
第四轴分度盘是数控机床的重要组成部分,它能大幅提高加工效率和精度。作为苏州谭祖自动化科技有限公司的工作人员,我们深知第四轴分度盘的重要性,因此在产品的生产和设计上投入了大量精力。我们的第四轴分度盘具有高精度、高性能、承载能力强等特点,能满足...
点击进入详情页
本回答由苏州谭祖自动化科技有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |