如下:
正比例函数y=kx(k≠0);
反比例函数y=k/x(k≠0);
一次函数y=kx+b(k≠0);
二次函数y=ax^2+bx+c(a≠0);
幂函数y=x^a;
指数函数y=a^x(a>0,a≠1);
对数函数y=log(a)x(a是底数,x是真数,且a>0,a≠1)。
表示
首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。
函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示 。