1+1=2证明过程是什么?

 我来答
社无小事
高能答主

2022-01-12 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20377

向TA提问 私信TA
展开全部

1+1就是指哥德巴赫猜想,就是每一个大于等于6的偶数都可以表示为两个奇素数的和。

比如说10=3+7,100=47+53等等,而绝不是说歌德巴赫猜想是要证明1+1=2。

陈景润并没有最终证明歌德巴赫猜想,所证明的可以表达为1+2,意思就是任何一个充分大的偶数都可以分解为一个质数与一个自然数之和,而该自然数仅仅是两个质数的乘积。

加法法则:

一位数的加法:两个一位数相加,可以直接用数数的方法求出和。

通常把两个一位数相加的结果编成加法表。

多位数的加法:相同数位上的数相加,哪一位上的数相加满十,再向前一位进一。

多位数加多位数,可以先把两个多位数写成不同计数单位的和的形式。

再根据加法的运算律和一位数加法法则,分别把相同计数单位的数相加。

上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
匿名用户
2022-12-20
展开全部
1+1=2背后代表的是自然数公理化的历史。
自然数公理化,最早于1881年,由美国数学家皮尔斯提出,定义如下:
1是最小的数;
x+y,当x=1时,是下一大于y的数,其它情况,是下一个大于x⁻+y的数;
x×y,当x=1时,就是y,其它情况,为y+x⁻y;
其中,x⁻是上一个小于x的数。
因为,减法和除法分别是加法和乘法的逆运算(而且对自然数并不封闭),因此只需要公理化加法和乘法就可以了。
按照皮尔斯公理的定义,1+1是x=1的情况,它的值是下一个大于y=1的数,即,2。
之后,1888年德国数学家戴德金,给出了另外一套公理:
设非空N,给定N中的一个元素e∈N,已经N上的映射S:N→N,若满足:
e不是S的值,即:e∉ranS;
S是单射,即:∀n,m∈N,(S(n)=S(m))⇒(n=m);
归纳原理,即,对于任意子集A⊂N,如果e∈N并且若n∈A则S(n)∈A那么A就是N,即:∀A⊂N,(1∈N)∧((1∈N)⇒(S(n)∈A))⇒(A=N),
则称三元组(N,e,S)是一个自然数系统,N称为自然数集,e称为初始元,S称为后继。
戴德金,从更本质的层次,对自然数进行了公理化,可以通过这套公理,定义自然数的加法和乘法运算从而和皮尔斯公理等价。
但是,这个公理系统表示的有些复杂(当时数理逻辑语言才刚刚建立),于是,没有引人们注意。
注:这里⊂是包含于,真包含于记为⊊。
紧接着第二年,即,1889年,意大利数学家皮亚诺,独立于戴德金,发布了皮亚诺公理:
0是自然数;
任意一个自然数n的后继数n⁺任然是自然数;
0不是任何自然数的后继数;
两个自然数相等当且仅当它们的后继数相等;
对于自然数集的子集A,如果0∈N并且若n∈A则n⁺∈A那么A就是自然数集。
很明显,皮亚诺公理就是戴德金公理的简化版本,因此也称为戴德金-皮亚诺公理。
注:最早,皮亚诺用1作为最小的自然数,并且将等价关系作为公理的一部分,上面是后来的改进版本。
用皮亚诺公理,定义自然数加法如下:
x+0=x
x+y⁺=(x+y)⁺
乘法如下:
x0=0
xy⁺=x+xy
利用上面的加法定义,证明题主的问题:
1+1=1+0⁺=(1+0)⁺=1⁺=2
以上不管是那个公理系统都是抽象的,在不同的数学领域有不同的实例,以皮亚诺公理为例有:
在最古老的算术下:
0=0
x⁺=x+1
在集合论下:
0=Ø
x⁺=x∪{x}
于是有:
1={0},2={0,1},3={0,1,2},...
丘奇数:
0=λ.sλ.zz
x⁺=λ.xλ.sλ.zxs(sz)
于是有:
1=λ.sλ.zsz,2=λ.sλ.zs(sz),3=λ.sλ.zs(s(sz))
在范畴论下:
设C是一个范畴,1是C的终止对象,于是定义范畴US₁(C)如下,
US₁(C)的对象是一个三元组(X,0ᵪ,Sᵪ),其中X是C的对象,0ᵪ:1→X和Sᵪ:X→X都是C的态射;
US₁(C)的态射f:(X,0ᵪ,Sᵪ)→(Y,0ᵧ,Sᵧ)就是C态射f:X→Y,并满足:f0ᵪ=0ᵧ并且fSᵪ=Sᵧf,
如果US₁(C)中可以找到一个初始对象(N,0,S),即,对于任意对象(X,0ᵪ,Sᵪ),有唯一的态射u:(N,0,S)→(X,0ᵪ,Sᵪ),则称C满足皮亚诺公理。US₁(C)中每个三元组对象都是一个皮亚诺公理系统。
可以证明这些实例都满足皮亚诺公理定义的条件,因此这些实例都是良定义的。
(由于本人数学水平有限,出错在所难免,欢迎题主和各位老师批评指正!)
二、1+1=2?哥德巴赫猜想
1、很多人不明白1+1=2为什么要被证明,这不是常识吗?
然而这个问题背后大有来头,看似简单却又奇妙无比。我来回答一下为什么1+1=2需要被证明,以及为什么这么难以被证明。
2、什么是“1+1=2”
所谓“1+1=2”,其实指的是哥德巴赫猜想,被称为世界近代三大数学难题之一。
1742年,哥德巴赫突发奇想:“任一大于2的整数都可写成三个质数之和。”然而哥德巴赫自己却无法证明,于是就给大名鼎鼎的欧拉写了一封信,提出了他的猜想,希望欧拉帮助他解决这个问题。
然而伟大的欧拉面对这个奇妙猜想,一直到去世,也没有办法给出合理的证明。有意思的是,至今几百年过去了,这道连小学生都能理解的题,却难倒了天下所有数学家。
3、一个激动人心的事实
目前最接近完美证明1+1=2的人我国的著名数学家陈景润先生,1966年,陈景润证明了哥德巴赫猜想中的“1+2”理论。这个结论被称为“陈氏定理”,将哥德巴赫猜想的证明大大地推进了一步。
注:在这之前,其他数学家曾从“1+n”逐渐证明到了“1+5”、“1+4”、“1+3”,这也叫筛选法。
而陈景润的“1+2”与“1+1”仅差一步之遥。只要证明了“1+1”理论,哥德巴赫猜想便可以划上一个完美的句号了。
然而,实际上我们距离这个问题的完美证明还有很远的距离。
4、为什么难以被证明
很多人不理解为什么哥德巴赫猜想这么伟大,其实原因就在于这个猜想几乎可以为所有大于2的整数定义。就相当于告诉世人,看,所有的整数都是由质数构成的。
而这,就好像在没有显微镜的时候,突然有人提出原子是构成所有物质的最小要素一样。
证明哥德巴赫猜想的难度,和要在没有显微镜的情况下证明原子是构成万物的难度一样。
5、写在最后
在这个问题下面看到很多不友善的回答,希望题主不用理会,追求真理是一件伟大的事。不过好心提醒一句题主,不要试图自己证明1+1=2,就算你宣称自己证明成功了,多半还是难免被冠以民科的称呼。
6、这个问题涉及到皮亚诺公理。
五个皮亚诺公理分别是:
(1)0是自然数;
(2)每一个自然数a,都有一个确定的后继数a',且a’也是自然数;
(3)0不是任何自然数的后继数;
(4)不同自然数有不同的后继数,如果a、b的后继数都是自然数c,那么a=b;
(5)如果集合S是自然数集合N的子集,且满足两个条件:Ι、0属于S;ΙΙ、如果n属于S,那么n的后继数也属于S;那么S就是自然数集,这条公理也叫做归纳公理。
这个公理的第五条描述的比较恶心。鉴于你这个问题我们就讨论第二条就可以
第二条公理中,假设自然数1的后继数为x',也就是说1+1=x'。然后我们就定义了x'叫做2,也就是说“1+1=2”;当然,你硬要定义为0也行,但是你就需要另外找一个名称,来代替原来的0,不然就和公理(3)矛盾了。
所以1+1=2这是人为定义,无需证明,也无法推翻。如果1+1不等于2,毫不客气的说,当前数学界百分之99以上的定理将全部崩塌,数学就要重新开始。
总结:不过,1+1还有一个含义,是哥德巴赫猜想的究极体形态。这个猜想目前还没有人可以证明,目前最好的证明是陈景润的1+2,所以哥德巴赫猜想1+1目前还无解,我当然也提供不了任何解决的思路。
如您还有其他对特的见解,欢迎留言一起讨论!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友f65111fda
2023-03-10
知道答主
回答量:1
采纳率:0%
帮助的人:251
展开全部
一个加一个等于两个,所以1+1=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式