![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
一道高数二重积分题,请给出具体步骤,谢谢
1个回答
展开全部
解:
设 ∫∫f(x,y)dxdy=C
f(x,y)=xy+C
∫∫f(x,y)dxdy
=∫[0,1]dx ∫[0,x²](xy+C)dy
=∫[0,1] (xy²/2+Cy) |[0,x²] dx
=∫[0,1] (x^5/2+Cx²) dx
=(x^6/12+Cx³/3) |[0,1]
=1/12+C/3
所以1/12+C/3=C
解得C=1/8
所以f(x,y)=xy+1/8
答案:选B
设 ∫∫f(x,y)dxdy=C
f(x,y)=xy+C
∫∫f(x,y)dxdy
=∫[0,1]dx ∫[0,x²](xy+C)dy
=∫[0,1] (xy²/2+Cy) |[0,x²] dx
=∫[0,1] (x^5/2+Cx²) dx
=(x^6/12+Cx³/3) |[0,1]
=1/12+C/3
所以1/12+C/3=C
解得C=1/8
所以f(x,y)=xy+1/8
答案:选B
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询