高一数学平面向量知识点分析

 我来答
达人方舟教育
2022-07-12 · TA获得超过5171个赞
知道大有可为答主
回答量:4785
采纳率:100%
帮助的人:250万
展开全部

  平面向量是高一的知识点,想要学习好需要学生把握好概念和运算,下面是我给大家带来的有关于高中数学平面向量知识点的具体介绍,希望能够帮助到大家。

  高一数学平面向量知识点

  向量:既有大小,又有方向的量.

  数量:只有大小,没有方向的量.

  有向线段的三要素:起点、方向、长度.

  零向量:长度为的向量.

  单位向量:长度等于个单位的向量.

  相等向量:长度相等且方向相同的向量

  &向量的运算

  加法运算

  AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

  已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

  对于零向量和任意向量a,有:0+a=a+0=a。

  |a+b|≤|a|+|b|。

  向量的加法满足所有的加法运算定律。

  减法运算

  与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

  (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  数乘运算

  实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

  设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

  向量的加法运算、减法运算、数乘运算统称线性运算。

  向量的数量积

  已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

  a.b的几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

  两个向量的数量积等于它们对应坐标的乘积的和。

  高一必修二数学平面的基本性质知识点

  平面的基本性质

  教学目标

  1、知识与能力:

  (1)巩固平面的基本性质即四条公理和三条推论.

  (2)能使用公理和推论进行解题.

  2、过程与方法:

  (1)体验在空间确定一个平面的过程与方法;

  (2)掌握利用平面的基本性质证明三点共线、三线共点、多线共面的方法。

  3、情感态度与价值观:

  培养学生认真观察的态度,慎密思考的习惯,提高学生的审美能力和空间想象的能力。

  教学重点

  平面的三条基本性质即三条推论.

  教学难点

  准确运用三条公理和推论解题.

  教学过程

  一、问题情境

  问题1:空间共点的三条直线能确定几个平面?空间互相平行的三条直线呢?

  问题2:如何判断桌子的四条腿的底端是否在一个平面内?

  二、温故知新

  公理1

  如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.

  公理2

  如果两个平面有一个公共点,那么它们还有其它公共点,这些公共点的集合是经过这个公共点的一条直线.

  公理3

  经过不在同一条直线上的三点,有且只有一个平面.

  推论1

  经过一条直线和这条直线外的一点,有且只有一个平面.

  推论2

  经过两条相交直线,有且只有一个平面.

  推论3

  经过两条平行直线,有且只有一个平面.

  公理 4(平行公理) 平行于同一条直线的两条直线互相平行.

  把以上各公理及推论进行对比:

  三、数学运用

  基础训练:(1)已知: ;求证:直线AD、BD、CD共面.

  证明: ——公理3推论1

  ——公理1

  同理可证, , 直线AD、BD、CD共面

  【解题反思1】1。逻辑要严谨

  2.书写要规范

  3.证明共面的步骤:

  (1)确定平面——公理3及其3个推论

  (2)证线“归” 面(线在面内如: )——公理1

  (3)作出结论。

  变式1、如果直线两两相交,那么这三条直线是否共面?(口答)

  变式2、已知空间不共面的四点,过其中任意三点可以确定一个平面,由这四个点能确定几个平面?

  变式3、四条线段顺次首尾连接,所得的图形一定是平面图形吗?(口答)

  (2)已知直线 满足: ;求证:直线

  证明: ——公理3推论3

  ——公理1

  直线 共面

  提高训练:已知 ,求证: 四条直线在同一平面内.

  思路分析:考虑由直线a,b确定一个平面,再证明直线c,l在此平面上,但十分困难。因而可以开放思路,考虑确定两个平面,再证明两个平面重合,问题迎刃而解。

  证明:

  ——公理3推论3

  ——公理3推论3

  ——公理1

  因此,平面 同时经过两条相交直线 所以平面 重合。——公理3推论2

  直线 共面

  上面方法称为同一法

  拓展训练:如图,三棱锥A-BCD中,E、G分别是BC、AB的中点,F在CD上,H在AD上,且有DF:FC=DH:HA=2:3;求证:EF、GH、BD交于一点.[渗透空间问题平面化思想]

  思路分析:思路1:开放思路,考虑三个平面,首先证明两条直线在一个面内,并且相交,然后证明交点在两个平面上,据公理2知它在两面唯一的交线——第三条直线上,因此证得三线共点。

  证法1:连接 ,

  因 E、G分别是BC、AB的中点,故 因DF:FC=DH:HA=2:3,故 ——公理4

  共面,由上知, 相交,设交点为O,则 平面 , 平面 ,

  所以 直线 所以EF、GH、BD交于一点。

  思路2:首先证明直线 GH、BD交于一点P,直线EF 、BD交于一点Q,然后证明两点P、Q重合,进而得出EF、GH、BD交于一点。

  证法法2:提示:过点H作HO,使得 ,交点为O,连接OF,证明 ,

  延长GH,EF,使它们与直线BD分别交于点P、Q,由三角形相似可以得出OP=OQ.所以点P、Q重合。

  链接生活:在正方体木头中,试画出过其中三条棱的中点P、Q、R的平面截得木头的截面形状.

  【解题反思2】1。逻辑要严谨

  2.书写要规范

  3.方法要掌握

  (1)证明共面的步骤:

  1)确定平面——公理3及其3个推论——公理3及3个推论

  2)证线“归” 面(线在面内如: )——公理1

  3)作出结论。

  (2)证明共线的步骤:

  ①证所有点在第一个面内(如平面 )——公理1

  ②证所有点在第二个面内(如平面 ) ——公理1

  ③结论1:所有点在两个平面的交线上

  ④结论2:所有点共线——公理2

  (3)证明共点的步骤:

  1)证交于一个点——公理3及3个推论

  2)证此点在二个面内(如平面 ) ——公理1

  3)结论1:此点在两个平面的交线上——————公理2

  4)结论2:三条线共点

  四、回顾小结

  本节主要复习了平面三个公理和三个推论,学会了如何使用公理及其推论解题.

  五、课外作业(见所发的前置作业)

  反馈练习

  [ 1.2.1 平面的基本性质(2)]

  1、经过同一直线上的3个点的平面( )

  A、有且只有1个 B、有且只有3个 C、有无数个 D、有0个

  2、若空间三个平面两两相交,则它们的交线条数是( )

  A、1或2 B、2或3 C、1或3 D、1或2或3

  3、与空间四点距离相等的平面共有( )

  A、3个或7个 B、4个或10个 C、4个或无数个 D、7个或无数个

  4、四条平行直线最多可以确定( )

  A、三个平面 B、四个平面 C、五个平面 D、六个平面

  5、四条线段首尾顺次相连,它们最多可确定的平面个数有 个.

  6、给出以下四个命题:

  ①若空间四点不共面,则其中无三点共线;

  ②若直线l上有一点在平面 外,则l在 外;

  ③若直线 、 、 中, 与 共面且 与 共面,则 与 共面;

  ④两两相交的三条直线共面.

  其中所有正确的命题的序号是 .

  7.点P在直线l上,而直线l在平面 内,用符号表示为( )

  A. B. C. D. 8.下列推理,错误的是( )

  A. B. C. D. 9.下面是四个命题的叙述语(其中A、B表示点, 表示直线, 表示平面)

  ① ② ③ ④ 其中叙述方法和推理过程都正确的命题的序号是_______________.

  10、已知A、B、C不在同一条直线上,求证:直线AB、BC、CA共面.

  11、求证:如果一条直线与两条平行线都相交,那么这三条直线在同一个平面内.

  已知:直线 、 、 且 , , ;

  求证:直线 、 、 共面.

  12、在正方体ABCD-A1B1C1D1中,

  ①AA1与CC1能否确定一个平面?为什么?

  ②点B、C1、D能否确定一个平面?为什么?

  ③画出平面ACC1A1与平面BC1D的交线,平面ACD1与平面BDC1的交线.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式