(x²+x)分之一+(x²+3x+2)分之1+(x²+5x+6)分之1+(x²+7x+12)分之1
展开全部
(x²+x)分之一 = 1/x - 1/(x+1)
(x²+3x+2)分之1=1/(x+1) - 1/(x+2)
(x²+5x+6)分之1=1/(x+2) - 1/(x+3)
(x²+7x+12)分之1=1/(x+3) - 1/(x+4)
右边相加 = 1/x- 1/(x+4)
(x²+3x+2)分之1=1/(x+1) - 1/(x+2)
(x²+5x+6)分之1=1/(x+2) - 1/(x+3)
(x²+7x+12)分之1=1/(x+3) - 1/(x+4)
右边相加 = 1/x- 1/(x+4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(x²+x)+1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)
=1/[x(x+1)]+1/[(x+1)(x+2)]+1/(x+2)(x+3)]+1/[(x+3)(x+4)]
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)
=1/x-1/(x+4)
=(x+4-x)/[x(x+4)]
=4/(x²+4x)
=1/[x(x+1)]+1/[(x+1)(x+2)]+1/(x+2)(x+3)]+1/[(x+3)(x+4)]
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)
=1/x-1/(x+4)
=(x+4-x)/[x(x+4)]
=4/(x²+4x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)
=1/x-1/(x+4)
=4/(x²+4x)
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)
=1/x-1/(x+4)
=4/(x²+4x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=1/[x(x+1)]+1/[(x+1)(x+2)]+1/[(x+2)(x+3)]+1/[(x+3)(x+4)]1/
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)
=1/x-1/(x+4)
=4/[x(x+4)]
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)
=1/x-1/(x+4)
=4/[x(x+4)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询