∫[√(x^2-9)]/xdx=?
1个回答
展开全部
令x=3sect
(3sect)^2-9=tant^2
所以原式子=∫3tant/sect d sect
= ∫3 tant/sect *sect*tant dt
=∫3tant^2dt
=3∫sint^2/cos^2dt
=3∫1-cos^2/cos^2dt
= 3 (tant-t)+c
(3sect)^2-9=tant^2
所以原式子=∫3tant/sect d sect
= ∫3 tant/sect *sect*tant dt
=∫3tant^2dt
=3∫sint^2/cos^2dt
=3∫1-cos^2/cos^2dt
= 3 (tant-t)+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询